全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synchronization of Uncertain Fractional-Order Hyperchaotic Systems via Unidirectional Linear Error Feedback Coupling Scheme

DOI: 10.1155/2013/512403

Full-Text   Cite this paper   Add to My Lib

Abstract:

A simple method for synchronization of uncertain fractional-order hyperchaotic systems is proposed in this paper. The method makes use of a unidirectional linear coupling approach due to its simple configuration and ease of implementation. To determine the coupling parameters, the synchronization error dynamics is first formulated as a fractional-order linear interval system. Then, the parameters are obtained by solving a linear matrix inequality (LMI) stability condition for stabilization of fractional-order linear interval systems. Thanks to the existence of an LMI solution, the convergence of the synchronization errors is guaranteed. The effectiveness of the proposed method is numerically illustrated by the uncertain fractional-order hyperchaotic Lorenz system. 1. Introduction Chaos synchronization has attracted great attention due to its superior potential applications, for example, in communication and optics. It has been studied since the pioneering work of Pecora and Carroll [1] was published. Currently, studies of chaos control and synchronization have more focus on hyperchaotic systems because of their rich chaos behaviors. Although the notion of fractional calculus dates from the 17th century [2], its practical applications have just recently been investigated. In recent year, it has been demonstrated that fractional-order systems could behave chaotically or hyperchaotically. Examples of such systems include the fractional-order Chua system [3], the fractional-order Chen system [4], the fractional-order hyperchaotic Lorenz system [5], and the fractional-order hyperchaotic Chen system [6]. Nowadays, whereas chaos synchronization of conventional integer-order chaotic and hyperchaotic systems has been extensively studied, chaos synchronization of fractional-order chaotic and hyperchaotic systems is still considered as a challenging research topic. Examples of existing methods for chaos synchronization of fractional-order chaotic and hyperchaotic systems are an active control method [7, 8], a sliding-mode control method [9, 10], a robust control method [11, 12], an adaptive control method [13], and a tracking control-based method [14, 15]. The sliding-mode control, robust control, and adaptive control are commonly used methods to cope with the nonlinear systems that have some uncertain parameters. This paper extends the robust control approach presented in [12] to synchronization of uncertain fractional-order hyperchaotic systems. A unidirectional linear error feedback coupling scheme is adopted here due to its simple configuration and ease of

References

[1]  L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
[2]  I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999.
[3]  T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos on a fractional Chua’s system,” IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, vol. 42, pp. 485–490, 1995.
[4]  C. Li and G. Chen, “Chaos in the fractional order Chen system and its control,” Chaos, Solitons and Fractals, vol. 22, no. 3, pp. 549–554, 2004.
[5]  X. Y. Wang and J. M. Song, “Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3351–3357, 2009.
[6]  X. Wu and Y. Lu, “Generalized projective synchronization of the fractional-order Chen hyperchaotic system,” Nonlinear Dynamics, vol. 57, no. 1-2, pp. 25–35, 2009.
[7]  S. Bhalekar and V. Daftardar-Gejji, “Synchronization of different fractional order chaotic systems using active control,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 11, pp. 3536–3546, 2010.
[8]  L. Pan, W. Zhou, L. Zhou, and K. Sun, “Chaos synchronization between two different fractional-order hyperchaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 6, pp. 2628–2640, 2011.
[9]  S. H. Hosseinnia, R. Ghaderi, A. Ranjbar N., M. Mahmoudian, and S. Momani, “Sliding mode synchronization of an uncertain fractional order chaotic system,” Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1637–1643, 2010.
[10]  C. Yina, S. Zhonga, and W. Chen, “Design of sliding mode controller for a class of fractional-order chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, pp. 356–366, 2012.
[11]  L. Chen, Y. Chai, and R. Wu, “Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems,” Chaos, vol. 21, no. 4, Article ID 043107, 2011.
[12]  S. Kuntanapreeda, “Robust synchronization of fractional-order unified chaotic systems via linear control,” Computers and Mathematics with Applications, vol. 63, no. 1, pp. 183–190, 2012.
[13]  R. Zhang and S. Yang, “Adaptive synchronization of fractional-order chaotic systems via a single driving variable,” Nonlinear Dynamics, vol. 66, no. 4, pp. 831–837, 2011.
[14]  P. Zhou and W. Zhu, “Function projective synchronization for fractional-order chaotic systems,” Nonlinear Analysis—Real World Applications, vol. 12, no. 2, pp. 811–816, 2011.
[15]  P. Zhou, R. Ding, and Y. X. Cao, “Multi drive-one response synchronization for fractional-order chaotic systems,” Nonlinear Dynamic, vol. 70, pp. 1263–1271, 2012.
[16]  J.-G. Lu and Y.-Q. Chen, “Robust stability and stabilization of fractional-order interval systems with the fractional order α The 0<α< 1 case,” IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 152–158, 2010.
[17]  K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133