The dynamics and robust finite-time hybrid projective synchronization of a fractional-order four-dimensional nonlinear system based on a two-stage Colpitts oscillator is investigated. The study of the fractional order stability of the equilibrium states of the system is carried out. The bifurcation diagram confirms the occurrence of Hopf bifurcation in the proposed system when the fractional-order passes a sequence of critical values; the Lyapunov exponent shows the different chaotic sequences of the system. Further, a fractional nonsingular terminal sliding surface and an appropriate robust fractional sliding mode control law are proposed for the finite-time hybrid projective synchronization of a fractional-order chaotic two-stage Colpitts oscillator by taking into account the effects of model uncertainties and the external disturbances. The fractional version of the Lyapunov stability is used to prove the finite-time existence of the sliding motion. Finally, some numerical simulations are presented to demonstrate the effectiveness and applicability of the proposed technique. 1. Introduction Fractional calculus has an about 300-year-old history, but its applications to physics and engineering are rather recent [1]. Many systems are known to display fractional-order dynamics, such as viscoelastic systems, dielectric polarization, and electromagnetic waves [2–4], just to name some. For some decades, there is a growing interest in investigating the chaotic behavior and dynamics of fractional-order dynamic systems; this can be understood as it has been found that fractional-order systems possess memory and display more sophisticated dynamics compared to their integral-order counterparts, something that is of great significance in secure communication [5–20]. It has been shown that several chaotic systems can remain chaotic when their models become fractional [5]. A three-dimensional fractional-order modified hybrid optical system is presented in [10] where it was shown that Hopf bifurcation occurs on the proposed system when the fractional order varies and passes a sequence of critical values. Despite these many examples the bifurcation of fractional-order nonlinear system has been studied using solely the Caputo derivative definition and limited to three-dimensional systems. On the other hand, in the past two decades, a new direction of chaos research has emerged to address the more challenging problem of chaos synchronization due to its potential applications in laser physics, chemical reactions, secure communication, biomedicine, and so on [21–23]. The
References
[1]
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, New Jersey, NJ, USA, 2001.
[2]
R. C. Koeller, “Application of fractional calculus to the theory of viscoelasticity,” Journal of Applied Mechanics, vol. 51, no. 2, pp. 299–307, 1984.
[3]
H. H. Sun, A. A. Abdelwahab, and B. Onaral, “Linear approximation of transfer function with a pole of fractional order,” IEEE Transactions on Automatic Control, vol. 29, no. 5, pp. 441–444, 1984.
[4]
O. Heaviside, Electromagnetic Theory, Chelsea, New York, NY, USA, 1971.
[5]
I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system,” Physical Review Letters, vol. 91, no. 3, Article ID 034101, 2003.
[6]
K. Sun and J. C. Sprott, “Bifurcations of fractional-order diffusionless lorenz system,” Electronic Journal of Theoretical Physics, vol. 6, no. 22, pp. 123–134, 2009.
[7]
P. Zhou and W. Zhu, “Function projective synchronization for fractional-order chaotic systems,” Nonlinear Analysis, vol. 12, no. 2, pp. 811–816, 2011.
[8]
D. Chen, Y. Q. Chen, and H. Sheng, “Fractional variational optical flow model for motion estimation,” in Proceedings of the 4th IFAC Workshop Fractional Differentiation and Its Application, pp. 18–20, Badajoz, Spain, October 2010.
[9]
J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” Journal of Optics A, vol. 10, no. 1, Article ID 015009, pp. 1–8, 2008.
[10]
M.-S. Abdelouahab, N.-E. Hamri, and J. Wang, “Hopf bifurcation and chaos in fractional-order modified hybrid optical system,” Nonlinear Dynamics, vol. 69, no. 1-2, pp. 275–284, 2012.
[11]
P. Zhou, “Control and synchronization of the fractional-order Lorenz chaotic system via fractional-order derivative,” Mathematical Problems in Engineering, vol. 2012, Article ID 214169, 14 pages, 2012.
[12]
P. Zhou, R. Ding, and Y. X. Cao, “Multi drive-one response synchronzation for fractional-order chaotic systems,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1263–1271, 2012.
[13]
S. Wang, Y. Yu, and M. Diao, “Hybrid projective synchronization of chaotic fractional order systems with different dimensions,” Physica A, vol. 389, no. 21, pp. 4981–4988, 2010.
[14]
S. H. Hosseinnia, R. Ghaderi, A. Ranjbar N., M. Mahmoudian, and S. Momani, “Sliding mode synchronization of an uncertain fractional order chaotic system,” Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1637–1643, 2010.
[15]
E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542–553, 2007.
[16]
D. Matignon, “Stability results for fractional differential equations with applications to control processing,” IEEE-SMC Computational Engineering in Systems Applications, vol. 2, pp. 963–968, 1996.
[17]
A. Razminia, V. J. Majd, and D. Baleanu, “Chaotic incommensurate fractional order R?ssler system: active control and synchronization,” Advances in Difference Equations, vol. 2011, p. 15, 2011.
[18]
M. S. Tavazoei, M. Haeri, M. Attari, S. Bolouki, and M. Siami, “More details on analysis of fractional-order Van der Pol oscillator,” JVC/Journal of Vibration and Control, vol. 15, no. 6, pp. 803–819, 2009.
[19]
M. S. Tavazoei and M. Haeri, “A proof for non existence of periodic solutions in time invariant fractional order systems,” Automatica, vol. 45, no. 8, pp. 1886–1890, 2009.
[20]
M. S. Tavazoei, “A note on fractional-order derivatives of periodic functions,” Automatica, vol. 46, no. 5, pp. 945–948, 2010.
[21]
L. O. Chua and M. Itah, “Chaos synchronization in Chua's circuits,” Journal of Circuits, Systems and Computers, vol. 3, no. 1, pp. 93–108, 1993.
[22]
L. O. Chua, T. Yang, and G. Q. Zhong, “Adaptive synchronization of Chua's oscillator,” International Journal of Bifurcation and Chaos, vol. 6, no. 1, pp. 189–201, 1996.
[23]
G. R. Chen and X. Dong, From Chaos to Order, World Scientific, Singapore, 1998.
[24]
L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
[25]
X. Wu and H. Wang, “A new chaotic system with fractional order and its projective synchronization,” Nonlinear Dynamics, vol. 61, no. 3, pp. 407–417, 2010.
[26]
M. P. Aghababa, “Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp. 2670–2681, 2012.
[27]
M. P. Aghababa, “finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional non-singular terminal sliding mode technique,” Nonlinear Dynamics, vol. 69, no. 1-2, pp. 247–261, 2012.
[28]
J. Kengne, J. C. Chedjou, V. A. Fono, and K. Kyamakya, “On the analysis of bipolar transistor based chaotic circuits: case of a two-stage colpitts oscillator,” Nonlinear Dynamics, vol. 67, no. 2, pp. 1247–1260, 2012.