全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Theoretical Analysis and Adaptive Synchronization of a 4D Hyperchaotic Oscillator

DOI: 10.1155/2014/429809

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose a new mathematical model of the TNC oscillator and study its impact on the dynamical properties of the oscillator subjected to an exponential nonlinearity. We establish the existence of hyperchaotic behavior in the system through theoretical analysis and by exploiting electronic circuit experiments. The obtained numerical results are found to be in good agreement with experimental observations. Moreover, the new technique on adaptive control theory is used on our model and it is rigorously proven that the adaptive synchronization can be achieved for hyperchaotic systems with uncertain parameters. 1. Introduction Over the last four decades, an increasing interest has been shown on chaotic systems with higher dimensional attractors known as hyperchaotic. The interest for hyperchaotic dynamics is justified by the rapid development of new techniques in various areas of physics such as nonlinear circuits [1–6], complex system studies [7, 8], laser dynamics [9–11], secure communication [12, 13], and synchronization [14–21]. Hyperchaotic systems are usually classified as chaotic systems with more than one positive Lyapunov exponent, indicating that the chaotic dynamics of the systems are expanded in some directions but rapidly shrink in other directions, which significantly increase the system’s orbital degree or disorder and randomness. Those systems are suitable for engineering application such as secure communications [12–14, 19, 20, 22]. In fact, in 1995, Pérez and Cerdeira [23] have shown that by masking signals with simple chaos with only one Lyapunov exponent does not provide high level of security. Hence, the use of more complex hyperchaotic signals is a straightforward way to overcome this limitation because of their increased randomness and higher unpredictability [24]. Therefore the dynamical behavior of several hyperchaotic electronic circuits has been studied [1, 2, 4–6, 10, 11, 25–27]. Within these, TNC oscillator [2] retains our attention. Indeed, it is extremely simple and provides a powerful tool for understanding the inherent architectures and dynamical behavior of hyperchaotic oscillator as well as their use as chaotic carriers in practical secure communication. Its synchronization and dynamics have been studied using a piecewise linear (PWL) model [4, 28]. Moreover, Peng et al. in [14], address the synchronization of hyperchaotic oscillators using a scalar transmitted signal. Furthermore, this scalar synchronization does not require either the computation of the Lyapunov exponent or initial conditions belonging to the same basin

References

[1]  T. Matsumoto, L. O. Chua, and K. Kobayashi, “Hyperchaos: laboratory experiment and numerical confirmation,” IEEE Transactions on Circuits and Systems, vol. 33, no. 11, pp. 1143–1147, 1986.
[2]  A. Tama?evi?ius, A. Namajunas, and A. ?enys, “Simple 4D chaotic oscillator,” Electronics Letters, vol. 32, no. 11, pp. 957–958, 1996.
[3]  A. Tama?evi?ius, A. ?enys, G. Mykolaitis, A. Namajunas, and E. Lindberg, “Hyperchaotic oscillator with gyrators,” Electronics Letters, vol. 33, no. 7, pp. 542–544, 1997.
[4]  G. Grassi and S. Mascolo, “Synchronisation of hyperchaotic oscillators using a scalar signal,” Electronics Letters, vol. 34, no. 5, pp. 424–425, 1998.
[5]  C. P. Silva and A. M. Young, “Introduction to chaos-based communications and signal processing,” in Proceedings of the 2000 IEEE Aerospace Conference, vol. 1, pp. 279–299, March 2000.
[6]  B. Cannas and S. Cincotti, “Hyperchaotic behaviour of two bi-directionally coupled Chua's circuits,” International Journal of Circuit Theory and Applications, vol. 30, no. 6, pp. 625–637, 2002.
[7]  N. Goldenfeld and L. P. Kadanoff, “Simple lessons from complexity,” Science, vol. 284, no. 5411, pp. 87–89, 1999.
[8]  R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE Journal of Quantum Electronics, vol. 41, no. 4, pp. 541–548, 2005.
[9]  R. Stoop, J. Peinke, J. Parisi, B. R?hricht, and R. P. Huebener, “A p-Ge semiconductor experiment showing chaos and hyperchaos,” Physica D, vol. 35, no. 3, pp. 425–435, 1989.
[10]  Y. Li, W. K. S. Tang, and G. Chen, “Hyperchaos evolved from the generalized Lorenz equation,” International Journal of Circuit Theory and Applications, vol. 33, no. 4, pp. 235–251, 2005.
[11]  Y. Li, X. Liu, G. Chen, and X. Liao, “A new hyperchaotic Lorenz-type system: generation, analysis, and implementation,” International Journal of Circuit Theory and Applications, vol. 39, no. 8, pp. 865–879, 2011.
[12]  C. K. Duan and S. S. Yang, “Synchronizing hyperchaos with a scalar signal by parameter controlling,” Physics Letters A, vol. 229, no. 3, pp. 151–155, 1997.
[13]  Z. Liu, C. Liu, M. Ho, Y. Hung, T. Hsu, and I. Jiang, “Synchronization of uncertain hyperchaotic and chaotic systems by adaptive control,” International Journal of Bifurcation and Chaos, vol. 18, no. 12, pp. 3731–3736, 2008.
[14]  J. H. Peng, E. J. Ding, M. Ding, and W. Yang, “Synchronizing hyperchaos with a scalar transmitted signal,” Physical Review Letters, vol. 76, no. 6, pp. 904–907, 1996.
[15]  A. Tamasevicius and A. Cenys, “Synchronizing hyperchaos with a single variable,” Physical Review E, vol. 55, pp. 297–299, 1997.
[16]  A. Tama?evi?ius, A. ?enys, A. Namajunas, and G. Mykolaitis, “Synchronising hyperchaos in infinite-dimensional dynamical systems,” Chaos, Solitons and Fractals, vol. 9, no. 8, pp. 1403–1408, 1999.
[17]  K. Murali, A. Tamasevicius, G. Mykolaitis, A. Namajunas, and E. Lindberg, “Hyperchaos system with unstable oscillators,” Nonlinear Phenomenon in Complex Systems, vol. 3, pp. 7–10, 2000.
[18]  S. Effati, J. Saberi-Nadjafi, and H. Saberi Nick, “Optimal and adaptive control for a kind of 3D chaotic and 4D hyperchaotic systems,” Applied Mathematical Modelling, vol. 38, pp. 759–774, 2014.
[19]  D. A. Miller and G. Grassi, “Experimental realization of observer-based hyperchaos synchronization,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 3, pp. 366–374, 2001.
[20]  V. S. Udaltsov, J. Goedgebuer, L. Larger, and W. T. Rhodes, “Communicating with optical hyperchaos: information encryption and decryption in delayed nonlinear feedback systems,” Physical Review Letters, vol. 86, no. 9, pp. 1892–1895, 2001.
[21]  A. Buscarino, L. Fortuna, and M. Frasca, “Experimental robust synchronization of hyperchaotic circuits,” Physica D, vol. 238, no. 18, pp. 1917–1922, 2009.
[22]  C. C. Yang, “Adaptive single input control for synchronization of a 4D Lorenz-Stenflo chaotic system,” Arabian Journal for Science and Engineering, 2013.
[23]  G. Pérez and H. A. Cerdeira, “Extracting messages masked by chaos,” Physical Review Letters, vol. 74, no. 11, pp. 1970–1973, 1995.
[24]  L. Pocora, “Hyperchaos harnessed,” Physics World, vol. 9, no. 5, p. 17, 1996.
[25]  G. Qi, M. A. van Wyk, B. J. van Wyk, and G. Chen, “A new hyperchaotic system and its circuit implementation,” Chaos, Solitons and Fractals, vol. 40, no. 5, pp. 2544–2549, 2009.
[26]  L. Liu, C. Liu, and Y. Zhang, “Theoretical analysis and circuit implementation of a novel complicated hyperchaotic system,” Nonlinear Dynamics, vol. 66, no. 4, pp. 707–715, 2011.
[27]  W. Wu, Z. Chen, and Z. Yuan, “The evolution of a novel four-dimensional autonomous system: among 3-torus, limit cycle, 2-torus, chaos and hyperchaos,” Chaos, Solitons and Fractals, vol. 39, no. 5, pp. 2340–2357, 2009.
[28]  G. Grassi and S. Mascolo, “Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal,” IEEE Transactions on Circuits and Systems I, vol. 44, no. 10, pp. 1011–1013, 1997.
[29]  X. Wang and Y. Wang, “Adaptive control for synchronization of a four-dimensional chaotic system via a single variable,” Nonlinear Dynamics, vol. 65, no. 3, pp. 311–316, 2011.
[30]  C. Yang, “Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller,” Nonlinear Dynamics, vol. 63, no. 3, pp. 447–454, 2011.
[31]  A. Tama?evi?ius, G. Mykolaitis, A. ?enys, and A. Namajunas, “Synchronisation of 4D hyperchaotic oscillators,” Electronics Letters, vol. 32, no. 17, pp. 1536–1538, 1996.
[32]  J. Kengne, J. C. Chedjou, V. A. Fono, and K. Kyamakya, “On the analysis of bipolar transistor based chaotic circuits: case of a two-stage colpitts oscillator,” Nonlinear Dynamics, vol. 67, no. 2, pp. 1247–1260, 2012.
[33]  J. Kengne, J. C. Chedjou, G. Kenne, and K. Kyamakya, “Dynamical properties and chaos synchronization of improved Colpitts oscillators,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 7, pp. 2914–2923, 2012.
[34]  A. S. Sedra and C. S. Kenneth, Microelectronic Circuits, Oxford University Press, New York, NY, USA, 5th edition, 2003.
[35]  A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D, vol. 16, no. 3, pp. 285–317, 1985.
[36]  K. Giannakopoulos, T. Deliyannis, and J. Hadjidemetriou, “Means for detecting chaos and hyperchaos in nonlinear electronic circuits,” in Proceedings of the 14th IEEE International Conference on Digital Signal Processing, pp. 951–954, 2002.
[37]  H. B. Fotsin and P. Woafo, “Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification,” Chaos, Solitons and Fractals, vol. 24, no. 5, pp. 1363–1371, 2005.
[38]  Y. Xu, W. Zhou, J. Fang, and W. Sun, “Adaptive bidirectionally coupled synchronization of chaotic systems with unknown parameters,” Nonlinear Dynamics, vol. 66, no. 1-2, pp. 67–76, 2011.
[39]  H. Adloo and M. Roopaei, “Review article on adaptive synchronization of chaotic systems with unknown parameters,” Nonlinear Dynamics, vol. 65, no. 1-2, pp. 141–159, 2011.
[40]  S. Vaidyanathan, “Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control,” Advances in Computing and Information Technology, vol. 117, pp. 1–10, 2013.
[41]  X. Zhou, L. Xiong, and X. Cai, “Adaptive switched generalized function projective synchronization between two hyperchaotic systems with unknown parameters,” Entropy, vol. 16, pp. 377–388, 2014.
[42]  X. Zhou, Z. Fan, D. Zhou, and X. Cai, “Passivity-based adaptive hybrid synchronization of a new hyperchaotic system with uncertain parameters,” The Scientific World Journal, vol. 2012, Article ID 920170, 6 pages, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133