全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adaptive Control for Modified Projective Synchronization-Based Approach for Estimating All Parameters of a Class of Uncertain Systems: Case of Modified Colpitts Oscillators

DOI: 10.1155/2014/659647

Full-Text   Cite this paper   Add to My Lib

Abstract:

A method of estimation of all parameters of a class of nonlinear uncertain dynamical systems is considered, based on the modified projective synchronization (MPS). The case of modified Colpitts oscillators is investigated. Through a suitable transformation of the dynamical system, sufficient conditions for achieving synchronization are derived based on Lyapunov stability theory. Global stability and asymptotic robust synchronization of the considered system are investigated. The proposed approach offers a systematic design procedure for robust adaptive synchronization of a large class of chaotic systems. The combined effect of both an additive white Gaussian noise (AWGN) and an artificial perturbation is numerically investigated. Results of numerical simulations confirm the effectiveness of the proposed control strategy. 1. Introduction Synchronization of chaotic systems and their potential applications in wide areas of physics and engineering sciences is currently a field of great interest ([1, 2] and references cited therein). The first idea of synchronizing two identical chaotic systems with different initial conditions is introduced by Pecora and Carroll [3] and the method is realized in electronic circuits. Synchronization techniques have been improved in recent years, and many different methods are applied theoretically and experimentally to synchronize the chaotic systems which include back stepping design technique [4], projective synchronization (PS) [5], modified projective synchronization (MPS) [6, 7], generalized synchronization [8], adaptive modified projective synchronization [9], lag synchronization [10], anticipating synchronization [11], phase synchronization [12], and their combinations [13]. Synchronization may involve several systems without a prescribed hierarchy (bidirectional) as it is the case in synchronization of networks of systems [14, 15], often happening naturally, for instance, in certain biological systems. Another intensive area of research to emphasize within bidirectional synchronization is the study of the consensus paradigm (see an excellent text in [16]). Amongst all kinds of chaos synchronization, MPS is the state-of-the-art of synchronization schemes. MPS means that the master and slave systems could be synchronized up to a constant scaling matrix. Recently, various control methods which include adaptive control [17, 18] and active control [7, 19, 20] have been introduced. Most of the works done on MPS of chaotic systems have used active control method since it is easy to design a control input and to deal with

References

[1]  T. Stojanovski, L. Kocarev, and U. Parlitz, “Driving and synchronizing by chaotic impulses,” Physical Review E, vol. 54, no. 2, pp. 2128–2131, 1996.
[2]  G. Chen and X. Dong, From Chaos To Order, World Scientific, Singapore, 1998.
[3]  L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
[4]  X. Wu and J. Lu, “Parameter identification and backstepping control of uncertain Lu system,” Chaos, Solitons & Fractals, vol. 18, no. 4, pp. 721–729, 2003.
[5]  R. Mainieri and J. Rehacek, “Projective synchronization in three-dimensional chaotic systems,” Physical Review Letters, vol. 82, no. 15, pp. 3042–3045, 1999.
[6]  G. H. Li, “Modified projective synchronization of chaotic system,” Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 1786–1790, 2007.
[7]  J. H. Park, “Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters,” Chaos, Solitons & Fractals, vol. 34, no. 4, pp. 1154–1159, 2007.
[8]  G. H. Li, “Generalized projective synchronization between Lorenz system and Chen's system,” Chaos, Solitons & Fractals, vol. 32, no. 4, pp. 1454–1458, 2007.
[9]  K. S. Sudheer and M. Sabir, “Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters,” Physics Letters A, vol. 373, no. 41, pp. 3743–3748, 2009.
[10]  M. G. Rosenblum, A. Pikovsky, and J. S. Kurths, “Phase synchronization of regular and chaotic oscillators,” Physical Review Letters, vol. 78, no. 22, pp. 4193–4196, 1997.
[11]  H. U. Voss, “Anticipating chaotic synchronization,” Physical Review E, vol. 61, no. 5, pp. 5115–5119, 2000.
[12]  M. G. Rosenblum, A. Pikovsky, and J. S. Kurths, “Phase synchronization of chaotic oscillators by external driving,” Physical Review Letters, vol. 76, pp. 1804–1807, 1996.
[13]  T. M. Hoang and M. Nakagawa, “Anticipating and projective-anticipating synchronization of coupled multidelay feedback systems,” Physics Letters A, vol. 365, no. 5-6, pp. 407–411, 2007.
[14]  G. Russo and M. di Bernardo, “Contraction theory and master stability function: linking two approaches to study synchronization of complex networks,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 2, pp. 177–181, 2009.
[15]  W. Wu, W. Zhou, and T. Chen, “Cluster synchronization of linearly coupled complex networks under pinning control,” IEEE Transactions on Circuits and Systems I, vol. 56, no. 4, pp. 829–839, 2009.
[16]  A. Sarlette and R. Sepulchre, “Consensus optimization on manifolds,” SIAM Journal on Control and Optimization, vol. 48, no. 1, pp. 56–76, 2009.
[17]  J. H. Park, “Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters,” Journal of Computational and Applied Mathematics, vol. 213, no. 1, pp. 288–293, 2008.
[18]  S. Bowong and J. J. Tewa, “Unknown inputs' adaptive observer for a class of chaotic systems with uncertainties,” Mathematical and Computer Modelling, vol. 48, no. 11-12, pp. 1826–1839, 2008.
[19]  M. F. Hu, Z. Y. Xu, R. Zhang, and A. Hu, “Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order,” Physics Letters A, vol. 365, no. 4, pp. 315–327, 2007.
[20]  U. E. Vincent, A. N. Njah, and J. A. Laoye, “Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control,” Physica D, vol. 231, no. 2, pp. 130–136, 2007.
[21]  C. Wang and J. P. Su, “A new adaptive variable structure control for chaotic synchronization and secure communication,” Chaos, Solitons & Fractals, vol. 20, no. 5, pp. 967–977, 2004.
[22]  H. Salarieh and M. Shahrokhi, “Adaptive synchronization of two different chaotic systems with time varying unknown parameters,” Chaos, Solitons & Fractals, vol. 37, no. 1, pp. 125–136, 2008.
[23]  X. Wu, Z. Guan, and Z. Wu, “Adaptive synchronization between two different hyperchaotic systems,” Nonlinear Analysis, Theory, Methods and Applications, vol. 68, no. 5, pp. 1346–1351, 2008.
[24]  X. Li, A. C. Leung, X. P. Han, X. Liu, and Y.-D. Chu, “Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control,” Nonlinear Dynamics, vol. 63, no. 1-2, pp. 263–275, 2011.
[25]  Y. Wang, C. Wen, M. Yang, and J. Xiao, “Adaptive control and synchronization for chaotic systems with parametric uncertainties,” Physics Letters A, vol. 372, no. 14, pp. 2409–2414, 2008.
[26]  A.-S. Mossa, M. Noorani, and M. Al-dlalah, “Adaptive anti-synchronization of chaotic systems with fully unknown parameters,” Computers and Mathematics with Applications, vol. 59, no. 10, pp. 3234–3244, 2010.
[27]  C. Shen, Z. Shi, and L. Ram, “Adaptive synchronization of chaotic Colpitts circuits against parameter mismatches and channel distortions,” Journal of Zhejiang University, vol. 7, no. 2, supplement, pp. 228–236, 2006.
[28]  S. Mayank, K. Saurabh, and D. Subir, “Adaptive projective synchronization between different chaotic systems with parametric uncertainties and external disturbances,” Pramana, vol. 81, no. 3, pp. 417–437, 2013.
[29]  Z. Jia, J. A. Lu, G. M. Deng, and Q. J. Zhang, “Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters,” Chinese Physics, vol. 16, no. 5, pp. 1246–1251, 2007.
[30]  K. S. Narendra and A. M. Annaswamy, Stable Adaptive System, Prentice-Hall, Englewood Cliffs, NJ, USA, 1989.
[31]  F. Mossayebi, H. K. Qammar, and T. T. Hartley, “Adaptive estimation and synchronization of chaotic systems,” Physics Letters A, vol. 161, pp. 255–230, 1991.
[32]  H. Fotsin and J. Daafouz, “Adaptive synchronization of uncertain chaotic Colpitts oscillators based on parameter identification,” Physics Letters A, vol. 339, no. 3–5, pp. 304–315, 2005.
[33]  L. Huang, M. Wang, and R. Feng, “Parameters identification and adaptive synchronization of chaotic systems with unknown parameters,” Physics Letters A, vol. 342, no. 4, pp. 299–304, 2005.
[34]  D. Huang, “Synchronization-based estimation of all parameters of chaotic systems from time series,” Physical Review E, vol. 69, no. 6, Article ID 067201, 4 pages, 2004.
[35]  C. Ababei and R. Marculescu, “Low-power realizations of secure chaotic communication schemes,” in Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems, pp. 30–33, Tianjin, China, 2000.
[36]  S. T. Kammogne and H. B. Fotsin, “Synchronization of modified Colpitts oscillators with structural perturbations,” Physica Scripta, vol. 83, Article ID 065011, 2011.
[37]  S. T. Kammogne, H. B. Fotsin, M. Kontchou, and P. Louodop, “A robust observer design for passivity-based synchronization of uncertain modified Colpitts oscillators and circuit simulation,” Asian Journal of Science and Technology, vol. 5, no. 1, pp. 29–41, 2013.
[38]  A. Tamasevicius, S. Bumeliene, and G. Mykolaitis, “Evaluation of bipolar transistors for application to RF chaotic Colpitts oscillator,” Scientific Proceedings of Riga Technical University, Series 7: Telecommunications and Electronics, vol. 1, pp. 53–54, 2001.
[39]  M. P. Kennedy, “Chaos in the Colpitts oscillator,” IEEE Transactions on Circuits and Systems I, vol. 41, no. 11, pp. 771–774, 1994.
[40]  S. Wiggings, Introduction To Applied Nonlinear Dynamics, Springer, New York, NY, USA, 2003.
[41]  H. K. Khalil, Nonlinear Control Systems, Springer, 3rd edition, 1995.
[42]  A. Loria, “Control of the new 4th-order hyper-chaotic system with one input,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 6, pp. 1621–1630, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133