Morphology-Controlled Synthesis and Characterization of Magnetic Iron Oxide Nanocrystals and Their Potential Applications in Selective Oxidation of Alcohols and Olefins
A protocol for the preparation of iron oxide nanocrystals of two different (nanorods and octahedrons) morphologies has been developed and the synthesized nanocrystals were well characterized by TEM and XRD. These two nanocrystals have been applied for the selectivie oxidation of aryl-methanol and vinyl-arene. Moreover, the magnetic catalysts have easily separated from reaction mixture by a magnet and are reused without appreciable loss of catalytic activity. The oxidation processes avoid the use of toxic catalysts and volatile and hazardous organic solvents. 1. Introduction Selective oxidations of aryl-methanol and vinyl-arene to aryl-aldehyde are synthetically important because of the wide applications of these products in organic reactions and also it is difficult to control the further oxidation to acid. Traditionally, oxidation of benzyl alcohol to benzaldehyde is performed with many oxidizing agents and was used in stoichiometric amount [1–3]. These oxidants are generally expensive in nature and most importantly they generate toxic heavy-metal waste and were performed in hazardous chlorinated solvents. In recent years, the oxidation reactions using hydrogen peroxide (H2O2) as reagent in combination of a catalyst has attracted much attention because H2O2 is very mild in nature, inexpensive, and produce only water as product [4–6]. For this reason, a number of methodologies have been developed for oxidation of alcohols using H2O2 as oxidant and various metal as catalyst [7–18]. Thus, there is a thrust in search for new green catalysts. Very recently, various nano-particles such as NiO2 NPs [19] and metal-oxide-supported nanogold [20] also applied as catalyst for the benzylic oxidation. Iron-based catalysts have been extensively used because they are easily accessible, inexpensive, environmentally benign, and relatively nontoxic in comparison with other transition metals. Different iron (II) [21–23] and iron (III) compounds [24–28] have been used as for the oxidation reactions. Herein, we report the synthesis and characterization of iron oxide nanomaterials of two different morphologies (namely, nanorod and octahedron) and their successful applications in the selective oxidation of aryl-methanol and vinyl-arene with H2O2 under organic solvent-free condition. 2. Results and Discussions At first, we have synthesized both the iron oxide nanorods and octahedrons using hydrogen peroxide by solvothermal technique. In a simple experimental procedure, a mixture of FeCl3 and FeCl2 was used in equimolar ratios as the precursor. Ethylenediamine and water were
References
[1]
R. A. Sheldon and J. K. Kochi, Metal Catalyzed Oxidations of Organic Compounds, chapter 6, Academic Press, New York, NY, USA, 1981.
[2]
M. Hudlick, Oxidation in Organic Chemistry, ACS Monographs 186, Washington, DC, USA, 1990.
[3]
S. V. Ley and A. Madin, “Oxidation adjacent to oxygen of alcohols by chromium reagents,” in Comprehensive Organic Synthesis, B. M. Trost and I. Fleming, Eds., vol. 7, Pergamon, Oxford, UK, 1991.
[4]
G. Strukul, Ed., Catalytic Oxidations with Hydrogen Peroxide as Oxidant, Kluwer, Dordrecht, The Netherlands, 1992.
[5]
K. Sato, M. Aoki, M. Ogawa, T. Hashimoto, and R. Noyori, “A practical method for epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions,” The Journal of Organic Chemistry, vol. 61, pp. 8310–8311, 1996.
[6]
W. R. Sanderson, “Cleaner industrial processes using hydrogen peroxide,” Pure and Applied Chemistry, vol. 72, no. 7, pp. 1289–1304, 2000.
[7]
R. Zennaro, F. Pinna, G. Strukul, and H. Arzoumanian, “A possible molecular pathway for the catalytic oxidation of secondary alcohols to ketones with hydrogen peroxide using platinum(II) complexes as catalysts,” Journal of Molecular Catalysis, vol. 70, pp. 269–275, 1991.
[8]
R. Neumann and M. Gara, “The manganese-containing polyoxometalate, [WZnMnII2(ZnW9O34)2]12-, as a remarkably effective catalyst for hydrogen peroxide mediated oxidations,” Journal of the American Chemical Society, vol. 117, pp. 5066–5074, 1995.
[9]
I. W. C. E. Arends, R. A. Sheldon, M. Wallau, and U. Schuchardt, “Oxidative transformations of organic compounds mediated by redox molecular sieves,” Angewandte Chemie International Edition, vol. 36, pp. 1144–1163, 1997.
[10]
S. Bouquillon, S. A?t-Mohand, and J. Muzart, “Chromium(VI)-catalyzed oxidations by hydrogen peroxide: influence of the presence of water and base,” European Journal of Organic Chemistry, vol. 1998, pp. 2599–2602, 1998.
[11]
J. H. Espenson, Z. Zhu, and T. H. Zauche, “Bromide ions and methyltrioxorhenium as cocatalysts for hydrogen peroxide oxidations and brominations,” The Journal of Organic Chemistry, vol. 64, pp. 1191–1196, 1999.
[12]
R. A. Sheldon, I. W. C. E. Arends, and A. Dijksman, “New developments in catalytic alcohol oxidations for fine chemicals synthesis,” Catalysis Today, vol. 57, pp. 157–166, 2000.
[13]
J. H. Wynne, C. T. Lloyd, D. R. Witsil, G. W. Mushrush, and W. M. Stalick, “Selective catalytic oxidation of alcohols using hydrogen peroxide,” Organic Preparations and Procedures International, vol. 32, pp. 588–592, 2000.
[14]
K. Sato, J. Taga ki, M. Aoki, and R. Noyori, “Hydrogen peroxide oxidation of benzylic alcohols to benzaldehydes and benzoic acids under halide-free conditions,” Tetrahedron Letters, vol. 39, pp. 7549–7552, 1998.
[15]
C. Zondervan, R. Hage, and B. L. Feringa, “Selective catalytic oxidation of benzyl alcohols to benzaldehydeswith a dinuclear manganese(iv) complex,” Chemical Communications, pp. 419–420, 1997.
[16]
T. Nishimura, N. Kakiuchi, M. Inoue, and S. Uemura, “Palladium(II)-supported hydrotalcite as a catalyst for selective oxidation of alcohols using molecular oxygen,” Chemical Communications, no. 14, pp. 1245–1246, 2000.
[17]
L. F. Liotta, A. M. Venezia, G. Deganello et al., “Liquid phase selective oxidation of benzyl alcohol over Pd-Ag catalysts supported on pumice,” Catalysis Today, vol. 66, no. 2–4, pp. 271–276, 2001.
[18]
T. Matsushita, K. Ebitani, and K. Kaneda, “Highly efficient oxidation of alcohols and aromatic compounds catalysed by the Ru-Co-Al hydrotalcite in the presence of molecular oxygen,” Chemical Communications, no. 3, pp. 265–266, 1999.
[19]
H. Ji, T. Wang, M. Zhang, Y. She, and L. Wang, “Simple fabrication of nano-sized NiO2 powder and its application to oxidation reactions,” Applied Catalysis A, vol. 282, pp. 25–30, 2005.
[20]
V. R. Choudhary, A. Dhar, P. Jana, R. Jha, and B. S. Uphade, “A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst,” Green Chemistry, vol. 7, pp. 768–770, 2005.
[21]
I. M. Kolthoff and A. I. Medalia, “The reaction between ferrous iron and peroxides. I. Reaction with hydrogen peroxide in the absence of oxygen,” Journal of the American Chemical Society, vol. 71, pp. 3777–3783, 1949.
[22]
C. Walling, “Intermediates in the reactions of fenton type reagents,” Accounts of Chemical Research, vol. 31, pp. 155–157, 1998.
[23]
P. A. MacFaul, D. D. M. Wayner, and K. U. Ingold, “A radical account of ‘Oxygenated Fenton Chemistry’,” Accounts of Chemical Research, vol. 31, pp. 159–162, 1998.
[24]
D. H. R. Barton, S. D. Beviere, B. M. Chabot, W. Chavasiri, and D. K. Taylor, “Studies on the oxidation of alcohols employing t-butyl hydroperoxide (TBHP) and Fe(III) catalysts,” Tetrahedron Letters, vol. 35, pp. 4681–4684, 1994.
[25]
K. P. Zeyer, S. Pushpavanam, M. Mangold, and E. D. Gilles, “The behavior of the iron(III)-catalyzed oxidation of ethanol by hydrogen peroxide in a fed-batch reactor,” Physical Chemistry Chemical Physics, vol. 2, pp. 3605–3612, 2000.
[26]
W. Nam, H. J. Han, S. Y. Oh et al., “New Insights into the mechanisms of O?O bond cleavage of hydrogen peroxide and tert-alkyl hydroperoxides by iron(III) porphyrin complexes,” Journal of the American Chemical Society, vol. 122, pp. 8677–8684, 2000.
[27]
S. I. Ozaki, M. P. Roach, T. Matsui, and Y. Watanabe, “Investigations of the roles of the distal heme environment and the proximal heme iron ligand in peroxide activation by heme enzymes via molecular engineering of myoglobin,” Accounts of Chemical Research, vol. 34, pp. 818–825, 2001.
[28]
S. Autzen, H. G. Korth, H. de Groot, and R. Sustmann, “Reactions of tetraazamacrocyclic FeIII complexes with hydrogen peroxide—putative catalase mimics?” European Journal of Organic Chemistry, vol. 2001, no. 16, pp. 3119–3125, 2001.