Microwave-Assisted Synthesis of Spirofused Heterocycles Using Decatungstodivanadogermanic Heteropoly Acid as a Novel and Reusable Heterogeneous Catalyst under Solvent-Free Conditions
Decatungstodivanadogermanic acid (H6GeW10V2O40·22H2O) was synthesized and used as a novel, green heterogeneous catalyst for the synthesis of spirofused heterocycles from one-pot three-component cyclocondensation reaction of a cyclic ketone, aldehyde, and urea in high yields under solvent-free condition in microwave irradiation at 80°C. This catalyst is efficient not only for cyclic ketones, but also for cyclic β-diketones, β-diester, and β-diamide derivatives such as cyclohexanone, dimedone, and Meldrum's acid, or barbituric acid derivatives. 1. Introduction Dihydropyrimidinones and their derivatives have attracted great attention recently in synthetic organic chemistry due to their pharmacological and therapeutic properties such as antibacterial and antihypertensive activity as well as behaving as calcium channel blockers, α-1a-antagonists [1], and neuropeptide Y (NPY) antagonists [2]. The biological activity of some alkaloids isolated recently has been attributed to a dihydropyrimidinone moiety [3]. The first procedure to these compounds reported by Biginelli [4] more than a century ago makes use of the three-component, one-pot condensation of a β-ketoester, an aldehyde, and a urea under strongly acidic conditions [4]. However this method suffers from low yields in the case of substituted aromatic and aliphatic aldehydes [5]. Owing to the versatile biological activity of dihydropyrimidinones, development of an alternative synthetic methodology is of paramount importance. Recently, many reviews [8, 9] and papers for preparing these compounds have been reported including classical conditions, with microwave and ultrasound irradiation and by using some other different catalysts such as phosphorus pentoxide-methanesulfonic acid [10], potassium terbutoxide (t-BuOK) [11], ammonium dihydrogen phosphate [12], silica-gel [13], mesoporous molecular sieve MCM-41 [14], cyanuric chloride [15], nano-BF3·SiO2 [16], silica gel-supported polyphosphoric Acid [17], zirconium(IV) chloride [18], indium(III) bromide [19], ytterbium(III)-resin [20], 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) or hexafluorophosphorate (BMImPF6) [21], ceric ammonium nitrate (CAN) [22], Mn(OAc)3·2H2O [23], lanthanide triflate [24], indium(III) chloride [25], lanthanum chloride [26], H2SO4 [27], montmorillonite KSF [28], polyphosphate ester (PPE) [29], BF3-OEt2/CuCl/HOAc [30], and conc. HCl [31, 32]. However, in spite of their potential utility, many of these methods involve expensive reagents, strongly acidic conditions, long reaction times, high temperatures, and stoichiometric
References
[1]
C. O. Kappe, W. M. F. Fabian, and M. A. Semones, “Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies,” Tetrahedron, vol. 53, no. 8, pp. 2803–2816, 1997.
[2]
G. C. Rovnyak, S. D. Kimball, B. Beyer et al., “Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators,” Journal of Medicinal Chemistry, vol. 38, no. 1, pp. 119–129, 1995.
[3]
B. B. Snider and Z. Shi, “Biomimetic syntheses of (±)-crambines A, B, C1, and C2. Revision of the structures of crambines B and C1,” Journal of Organic Chemistry, vol. 58, no. 15, pp. 3828–3839, 1993.
[4]
C. O. Kappe, “100 years of the Biginelli dihydropyrimidine synthesis,” Tetrahedron, vol. 49, no. 32, pp. 6937–6963, 1993.
[5]
J. Barluenga, M. Tomás, A. Ballesteros, and L. A. López, “1,4-Cycloaddition of 1,3-diazabutadienes with enamines: an efficient route to the pyrimidine ring,” Tetrahedron Letters, vol. 30, no. 34, pp. 4573–4576, 1989.
[6]
S. R. Jetti, D. Verma, and S. Jain, “NBS/AIBN promoted one-pot multi component regioselective synthesis of spiro heterobicyclic rings via Biginelli-like condensation reaction,” Journal of Chemical and Pharmaceutical Research, vol. 4, no. 5, pp. 2373–2379, 2012.
[7]
S. R. Jetti, D. Verma, and S. Jain, “An efficient one-pot green protocol for the synthesis of 5-unsubstituted 3, 4-dihydropyrimidin-2(1H)-ones using recyclable amberlyst 15 DRY as a heterogeneous catalyst via three-component Biginelli-like reaction,” ISRN Organic Chemistry, vol. 2012, Article ID 480989, 8 pages, 2012.
[8]
S. Panda, K. Siva, K. Pankaj, and Leena, “Biginelli reaction: a green perspective,” Current Organic Chemistry, vol. 16, no. 4, pp. 507–520, 2012.
[9]
Suresh and S. J. Sandhu, “Past, present and future of the Biginelli reaction: a critical perspective,” Arkivoc, vol. 1, pp. 66–133, 2012.
[10]
A. Borse, P. Mahesh, P. Nilesh, and S. Rohan, “A green, expeditious, one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones using a mixture of phosphorus pentoxide-methanesulfonic acid at ambient temperature,” ISRN Organic Chemistry, vol. 2012, Article ID 415645, 6 pages, 2012.
[11]
D. Abdelmadjid, C. Louisa, B. Raouf, and C. Bertrand, “A one-pot multi-component synthesis of dihydropyrimidinone/thione and dihydropyridine derivatives via Biginelli and Hantzsch condensations using t-BuOK as a catalyst under solvent-free conditions,” The Open Organic Chemistry Journal, vol. 6, pp. 12–20, 2012.
[12]
T. Reza, M. Behrooz, and G. Malihe, “Ammonium dihydrogen phosphate catalyst for one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones,” Chinese Journal of Catalysis, vol. 33, no. 4–6, pp. 659–665, 2012.
[13]
S. Agarwal, U. Aware, A. Patil et al., “Silica-gel catalyzed facile synthesis of 3, 4-dihydropyrimidinones,” Bulletin of Korean Chemical Society, vol. 33, no. 2, pp. 377–378, 2012.
[14]
R. Hekmatshoar, M. Heidari, M. M. Heravi, and B. Baghernejad, “Mesoporous molecular sieve MCM-41 catalyzed one-pot synthesis of 3,4-dihydro-2(1H)-pyrimidinones and -thiones under solvent-free conditions,” Bulletin of the Chemical Society of Ethiopia, vol. 25, no. 2, pp. 309–313, 2011.
[15]
J. A. Kumar, C. Shanmugam, and P. H. Babu, “One pot synthesis of dihydropyrimidinones catalyzed by Cyanuric chloride: an improved procedure for the Biginelli reaction,” Der Pharma Chemica, vol. 3, no. 4, pp. 292–297, 2011.
[16]
B. F. Mirjalili, A. Bamoniri, and A. Akbari, “One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (thiones) promoted by nano-BF3.SiO2,” Journal of the Iranian Chemical Society, vol. 8, no. 1, pp. S135–S140, 2011.
[17]
M. Zeinali-Dastmalbaf, A. Davoodnia, M. M. Heravi, N. Tavakoli-Hoseini, A. Khojastehnezhad, and H. A. Zamani, “Silica gel-supported polyphosphoric acid (PPA-SiO2) catalyzed one-pot multi-component synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and -thiones: an efficient method for the Biginelli reaction,” Bulletin of the Korean Chemical Society, vol. 32, no. 2, pp. 656–658, 2011.
[18]
C. V. Reddy, M. Mahesh, P. V. K. Raju, T. R. Babu, and V. V. N. Reddy, “Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Tetrahedron Letters, vol. 43, no. 14, pp. 2657–2659, 2002.
[19]
N. Y. Fu, Y. F. Yuan, Z. Cao, S. W. Wang, J. T. Wang, and C. Peppe, “Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction,” Tetrahedron, vol. 58, no. 24, pp. 4801–4807, 2002.
[20]
A. Dondoni and A. Massi, “Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction,” Tetrahedron Letters, vol. 42, no. 45, pp. 7975–7978, 2001.
[21]
J. Peng and Y. Deng, “Ionic liquids catalyzed Biginelli reaction under solvent-free conditions,” Tetrahedron Letters, vol. 42, no. 34, pp. 5917–5919, 2001.
[22]
J. S. Yadav, B. V. S. Reddy, K. B. Reddy, K. S. Raj, and A. R. Prasad, “Ultrasound-accelerated synthesis of 3,4-dihydropyrimidin-2(1H)-ones with ceric ammonium nitrate,” Journal of the Chemical Society, no. 16, pp. 1939–1941, 2001.
[23]
K. A. Kumar, M. Kasthuraiah, C. S. Reddy, and C. D. Reddy, “Mn(OAc)3·2H2O-mediated three-component, one-pot, condensation reaction: an efficient synthesis of 4-aryl-substituted 3,4-dihydropyrimidin-2-ones,” Tetrahedron Letters, vol. 42, no. 44, pp. 7873–7875, 2001.
[24]
Y. Ma, C. Qian, L. Wang, and M. Yang, “Lanthanide triflate catalyzed biginelli reaction. One-pot synthesis of dihydropyrimidinones under solvent-free conditions,” Journal of Organic Chemistry, vol. 65, no. 12, pp. 3864–3868, 2000.
[25]
B. C. Ranu, A. Hajra, and U. Jana, “Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction,” Journal of Organic Chemistry, vol. 65, no. 19, pp. 6270–6272, 2000.
[26]
J. Lu, Y. Bai, Z. Wang, B. Yang, and H. Ma, “One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst,” Tetrahedron Letters, vol. 41, no. 47, pp. 9075–9078, 2000.
[27]
J. C. Bussolari and P. A. McDonnell, “A new substrate for the Biginelli cyclocondensation: direct preparation of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones from a β-keto carboxylic acid,” Journal of Organic Chemistry, vol. 65, no. 20, pp. 6777–6779, 2000.
[28]
F. Bigi, S. Carloni, B. Frullanti, R. Maggi, and G. Sartori, “A revision of the biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF,” Tetrahedron Letters, vol. 40, no. 17, pp. 3465–3468, 1999.
[29]
C. O. Kappe, D. Kumar, and R. S. Varma, “Microwave-assisted high-speed parallel synthesis of 4-aryl-3,4- dihydropyrimidin-2(1H)-ones using a solventless biginelli condensation protocol,” Synthesis, no. 10, pp. 1799–1803, 1999.
[30]
E. H. Hu, D. R. Sidler, and U. H. Dolling, “Unprecedented catalytic three component one-pot condensation reaction: an efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin- 2(1H)-ones,” Journal of Organic Chemistry, vol. 63, no. 10, pp. 3454–3457, 1998.
[31]
K. S. Atwal, G. C. Rovnyak, B. C. O'Reilly, and J. Schwartz, “Substituted 1,4-dihydropyrimidines. 3. Synthesis of selectively functionalized 2-hetero-1,4-dihydropyrimidines,” Journal of Organic Chemistry, vol. 54, no. 25, pp. 5898–5907, 1989.
[32]
V. I. Saloutin, Y. V. Burgart, O. G. Kuzueva, C. O. Kappe, and O. N. Chupakhin, “Biginelli condensations of fluorinated 3-oxo esters and 1,3-diketones,” Journal of Fluorine Chemistry, vol. 103, no. 1, pp. 17–23, 2000.
[33]
I. V. Kozhevnikov, “Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions,” Chemical Reviews, vol. 98, no. 1, pp. 171–198, 1998.
[34]
I. V. Kozhevnikov, “Sustainable heterogeneous acid catalysis by heteropoly acids,” Journal of Molecular Catalysis A, vol. 262, no. 1-2, pp. 86–92, 2007.
[35]
F. Saeid and P. Somayeh, “Decatungstodivanadogermanic heteropoly acid (H6GeW10V2O40. 22H2O): a novel, green and reusable catalyst for efficient acetylation of alcohols and phenols under solvent-free conditions,” European Journal of Chemistry, vol. 1, no. 4, pp. 335–340, 2010.
[36]
Y. Zhu, Y. Pan, and S. Huang, “Trimethylsilyl chloride: a facile and efficient reagent for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Synthetic Communications, vol. 34, no. 17, pp. 3167–3174, 2004.
[37]
S. R. Jetti, D. Verma, and S. Jain, “Carbon-based solid acid as an efficient and reusable catalyst for the synthesis of 4, 6-diarylpyrimidin-2(1H)-ones under solvent-free conditions,” Der Chemica Sinica, vol. 3, no. 3, pp. 636–640, 2012.
[38]
J. S. Rao, G. N. Babu, P. Pradeep, B. Anjna, T. Kadre, and J. Shubha, “Amberlyst 15 DRY resin: a green and recyclable catalyst for facile and efficient one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones,” Der Pharma Chemica, vol. 4, no. 1, pp. 417–427, 2012.
[39]
T. Kadre, S. R. Jetti, A. Bhatewara, P. Paliwal, and S. Jain, “Green protocol for the synthesis of 3, 4-Dihydropyrimidin-2(1H)-ones/thiones using TBAB as a catalyst and solvent free condition under microwave irradiation,” Archives of Applied Science Research, vol. 4, no. 2, pp. 988–993, 2012.
[40]
P. Pradeep, J. S. Rao, and J. Shubha, “DABCO promoted multi-component one-pot synthesis of xanthene derivatives,” Research Journal of Chemical Sciences, vol. 2, no. 8, pp. 21–25, 2012.
[41]
Q. Wu, Q. Chen, X. Cai, J. Wang, and J. Zhang, “Preparation and conductivity of solid high-proton conductor silica gel containing 80wt.% decatungstodivanadogermanic acid,” Materials Letters, vol. 61, no. 3, pp. 663–665, 2007.
[42]
Q. Y. Wu, S. K. Wang, D. N. Li, and X. F. Xie, “Preparation and characterization of decatungstomolybdoniobogermanic heteropoly acid H5[GeW10MoNbO40] · 20H2O,” Inorganic Chemistry Communications, vol. 5, no. 5, pp. 308–311, 2002.
[43]
U. B. Mioe, M. R. Todorovic, S. M. Uskokovic-Markovic et al., “Structure and proton conductivity in a magnesium salt of 12-tungstophosphoric acid,” Solid State Ionics, vol. 162-163, no. EX-1-EX-8, pp. 217–223, 2003.
[44]
G. Byk, H. E. Gottlieb, J. Herscovici, and F. Mirkin, “New regioselective multicomponent reaction: one pot synthesis of spiro heterobicyclic aliphatic rings,” Journal of Combinatorial Chemistry, vol. 2, no. 6, pp. 732–735, 2000.