全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Ni-Co-Mo-K Catalysts Supported on Multiwalled Carbon Nanotubes for Higher Alcohols Synthesis

DOI: 10.1155/2013/942145

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alkali-promoted Ni-Co-Mo catalysts supported on multiwalled carbon nanotubes (MWCNTs) were prepared using 9?wt% K, 4.5?wt% Co, and 15?wt% Mo, whereas Ni content was varied from 0 to 6?wt%. The catalysts were extensively characterized and studied for higher alcohols synthesis from synthesis gas. Alkali-promoted trimetallic catalyst with 3?wt% Ni showed the highest total alcohols yield of 0.284?gm/(gm of cat./h), ethanol selectivity of 20%, and higher alcohols selectivity of 32% at 330°C and 9.0?MPa using gas hourly space velocity (GHSV) of 3.8?m3 (STP)/kg of catalyst/h and H2 to CO molar ratio of 1.25. 1. Introduction Ethanol has been used as an additive for reformulated gasoline as unleaded gasoline has become the standard, and short ether compounds (MTBE, ETBE, etc.) have been banned as gasoline octane continues to improve in North America [1]. The catalytic conversion of syngas to ethanol, and other higher alcohols, is generally recognized as an interesting route for the production of clean fuels and petrochemical feedstocks from coal, natural gas, and hydrocarbon wastes via gasification [2]. The catalysts for higher alcohol synthesis (HAS) are divided into two main groups based on the product distribution [3]. Alkali-doped high-temperature ZnCrO-based and low-temperature Cu-based catalysts produce mainly methanol and higher branched alcohols [4, 5]. Methanol synthesis catalysts modified with Fischer-Tropsch (FT) elements and modified Mo-catalysts are the second group of HAS catalysts. These catalysts yield a series of linear primary alcohols and gaseous hydrocarbons both with Anderson-Schulz-Flory (ASF) carbon number distribution [6, 7]. Comparatively, molybdenum-sulfide-based catalysts showed a high proportion of higher alcohols at lower pressure and high temperature. MoS2-based catalysts can tolerate sulfur and coke-buildup as a result of higher alcohols synthesis. When MoS2 is promoted with K2CO3, the same performance of the catalysts is achieved at a significantly lower temperature [8]. The alkali-promoted MoS2 catalysts promoted with Co showed high activity to alcohols and can also produce alcohols with a variable ratio of methanol to higher alcohols by changing the operating conditions [9, 10]. The CO hydrogenation was studied over K/Co/Mo/A12O3 and K/Co/Mo/SiO2 catalysts and found that all three elements are necessary for higher activity. Hydrocarbons and alcohols were produced in approximately equal amounts over both the catalysts [11]. Copromotion on alkali-modified MoS2 catalysts leads to the shrinking of MoS2 species, while Co exists

References

[1]  V. Mahdavia, M. H. Peyrovia, M. Islamib, and J. Yegane Mehrb, “Synthesis of higher alcohols from syngas over Cu–Co2O3/ZnO, Al2O3 catalyst,” Applied Catalysis A, vol. 281, no. 1-2, pp. 259–265, 2005.
[2]  V. R. Surisetty, J. Kozinski, and A. K. Dalai, “Alcohols as alternative fuels: an overview,” Applied Catalysis A, vol. 404, no. 1-2, pp. 1–11, 2011.
[3]  P. Forzatti, E. Tronconi, and I. Pasquon, “Higher alcohol synthesis,” Catalysis Reviews, vol. 33, no. 1-2, pp. 109–168, 1991.
[4]  J. M. Campos-Martín, J. L. G. Fierro, A. Guerrero-Ruiz, R. G. Herman, and K. Klier, “Promoter effect of cesium on C–C bond formation during alcohol synthesis from CO/H2 over Cu/ZnO/Cr2O3 catalysts,” Journal of Catalysis, vol. 163, no. 2, pp. 418–428, 1996.
[5]  R. Xu, C. Yang, W. Wei, W. H. Li, Y. H. Sun, and T. D. Hu, “Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas,” Journal of Molecular Catalysis A, vol. 221, no. 1-2, pp. 51–58, 2004.
[6]  X. Xiaoding, E. B. M. Doesburg, and J. J. F. Scholten, “Synthesis of higher alcohols from syngas—recently patented catalysts and tentative ideas on the mechanism,” Catalysis Today, vol. 2, no. 1, pp. 125–170, 1987.
[7]  H. C. Woo and K. Y. Park, “Mixed alcohol synthesis from carbon monoxide and dihydrogen over potassium-promoted molybdenum carbide catalysts,” Applied Catalysis, vol. 75, no. 1, pp. 267–280, 1991.
[8]  V. R. Surisetty, A. Tavasoli, and A. K. Dalai, “Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes,” Applied Catalysis A, vol. 365, no. 2, pp. 243–251, 2009.
[9]  C. B. Murchison, M. M. Conway, R. R. Stevens, and G. J. Qurarderer, “Process for producing olefins from carbon monoxide and hydrogen,” in in Proceedings of the 9th International Congress on Catalysis, vol. 2, p. 561, 1988.
[10]  J. Iranmahboob, D. O. Hill, and H. Toghiani, “K2CO3/Co-MoS2/clay catalyst for synthesis of alcohol: influence of potassium and cobalt,” Applied Catalysis A, vol. 231, no. 1-2, pp. 99–108, 2002.
[11]  A. Fujumoto and T. Oba, “Synthesis of C1–C7 alcohols from synthesis gas with supported cobalt catalysts,” Applied Catalysis, vol. 13, pp. 289–319, 1985.
[12]  V. R. Surisetty, Y. Hu, A. K. Dalai, and J. Kozinski, “Structural characterization and catalytic performance of alkali (K) and metal (Co and Rh)-promoted MoS2 catalysts for higher alcohols synthesis,” Applied Catalysis A, vol. 392, no. 1-2, pp. 166–172, 2011.
[13]  V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs,” Applied Catalysis A, vol. 385, no. 1-2, pp. 153–162, 2010.
[14]  D. B. Li, C. Yang, H. J. Qi, W. H. Li, Y. H. Sun, and B. Zhong, “Higher alcohol synthesis over a La promoted Ni/K2CO3/MoS2 catalyst,” Catalysis Communications, vol. 5, no. 10, pp. 605–609, 2004.
[15]  S. A. Hedrick, S. S. C. Chuang, A. Pant, and A. G. Dastidar, “Activity and selectivity of Group VIII, alkali-promoted Mn–Ni, and Mo-based catalysts for C2+ oxygenate synthesis from the CO hydrogenation and CO/H2/C2H4 reactions,” Catalysis Today, vol. 55, no. 3, pp. 247–257, 2000.
[16]  S. S. C. Chuang and S. I. Pien, “Infrared studies of reaction of ethylene with syngas on Ni/SiO2,” Catalysis Letters, vol. 3, no. 4, pp. 323–329, 1989.
[17]  M. A. Haider, M. R. Gogate, and R. J. Davis, “Fe-promotion of supported Rh catalysts for direct conversion of syngas to ethanol,” Journal of Catalysis, vol. 261, no. 1, pp. 9–16, 2009.
[18]  V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Effect of Rh promoter on MWCNT-supported alkali-modified MoS2 catalysts for higher alcohols synthesis from CO hydrogenation,” Applied Catalysis A, vol. 381, no. 1-2, pp. 282–288, 2010.
[19]  V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Alkali-promoted trimetallic Co–Rh–Mo sulfide catalysts for higher alcohols synthesis from synthesis gas: comparison of MWCNT and activated carbon supports,” Industrial & Engineering Chemistry Research, vol. 49, pp. 6845–6853, 2010.
[20]  P. J. Van Berge, J. Van De Loosdrecht, S. Barradas, and A. M. Van Der Kraan, “Oxidation of cobalt based Fischer-Tropsch catalysts as a deactivation mechanism,” Catalysis Today, vol. 58, no. 4, pp. 321–334, 2000.
[21]  P. Serp, M. Corrias, and P. Kalck, “Carbon nanotubes and nanofibers in catalysis,” Applied Catalysis A, vol. 253, no. 2, pp. 337–358, 2003.
[22]  M. Xiaoming, L. Guodong, and Z. Hongbin, “Co–Mo–K sulfide-based catalyst promoted by multiwalled carbon nanotubes for higher alcohol synthesis from syngas,” Chinese Journal of Catalysis, vol. 27, no. 11, pp. 1019–1027, 2006.
[23]  V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Influence of porous characteristics of the carbon support on alkali-modified trimetallic Co–Rh–Mo sulfided catalysts for higher alcohols synthesis from synthesis gas,” Applied Catalysis A, vol. 393, pp. 50–58, 2011.
[24]  V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Deactivation studies of alkali-promoted trimetallic Co–Rh–Mo sulfide catalysts for higher alcohols synthesis from synthesis gas,” Energy & Fuels, vol. 25, pp. 580–590, 2011.
[25]  V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Intrinsic reaction kinetics of higher alcohol synthesis from synthesis gas over a sulfided alkali-promoted Co–Rh–Mo trimetallic catalyst supported on multiwalled carbon nanotubes (MWCNTs),” Energy & Fuels, vol. 24, pp. 4130–44137, 2011.
[26]  V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Effect of operating conditions for higher alcohols synthesis from synthesis gas over alkali-modified Co-Rh-Mo trimetallic catalyst supported on multi-walled carbon nanotubes,” International Journal of Chemical Reactor Engineering, vol. 9, no. 1, 2011.
[27]  M. C. Bahome, L. L. Jewell, D. Hildebrandt, D. Glasser, and N. J. Coville, “Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes,” Applied Catalysis A, vol. 287, pp. 60–67, 2005.
[28]  Z. R. Li, Y. L. Fu, M. Jiang, T. D. Hu, T. Liu, and Y. N. Xie, “Active carbon supported Mo–K catalysts used for alcohol synthesis,” Journal of Catalysis, vol. 199, no. 2, pp. 155–161, 2001.
[29]  Z. Li, Y. Fu, J. Bao et al., “Effect of cobalt promoter on Co–Mo–K/C catalysts used for mixed alcohol synthesis,” Applied Catalysis A, vol. 220, pp. 21–230, 2001.
[30]  H. Qi, D. Li, C. Yang et al., “Nickel and manganese co-modified K/MoS2 catalyst: high performance for higher alcohols synthesis from CO hydrogenation,” Catalysis Communications, vol. 4, no. 7, pp. 339–3342, 2003.
[31]  J. G. Santiesteban, Alcohol synthesis from carbon-monoxide and hydrogen over MoS2-based catalyst [Ph.D. thesis], Lehigh University, Bethlehem, Pa, USA, 1989.
[32]  Z. R. Li, Y. L. Fu, and M. Jiang, “Structures and performance of Rh–Mo–K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas,” Applied Catalysis A, vol. 187, no. 2, pp. 187–198, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133