全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis of Catalysts and Its Application for Low-Temperature CO Oxidation

DOI: 10.1155/2013/586364

Full-Text   Cite this paper   Add to My Lib

Abstract:

A series of Au/ -TiO2 with various Co/Ti ratios prepared. /TiO2 was prepared by incipient wetness impregnation with aqueous solution of cobalt nitrate. Au catalysts were prepared by deposition-precipitation (DP) method at pH 7 and 338?K. The catalysts were characterized by inductively coupled plasma-mass spectrometry, temperature programming reduction, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The reaction was carried out in a fixed bed reactor with a feed containing 1% CO in air at weight hourly space velocities of 120,000?mL/h?g and 180,000?mL/h?g. High gold dispersion and narrow particle size distribution were obtained by DP method. The addition of into Au/TiO2 enhanced the activity of CO oxidation significantly. Au/5%?? -TiO2 had the highest catalyst among all the catalysts. was mainly in the form of nanosize Co3O4 which could stabilize the Au nanoparticles. donated partial electrons to Au. The interactions among Au, , and TiO2 account for the high catalytic activity for CO oxidation. 1. Introduction Carbon monoxide is a toxic, colorless, and tasteless gas. It can cause human being to die in short time. Low-temperature CO oxidation has been extensively studied because it plays an important role in gas purification in CO2 lasers, CO gas sensors, air purification devices, and removing trace quantity of CO from ambient air in enclosed atmospheres such as submarines and aircrafts [1–3]. When gold is deposited as nanoparticles on metal oxides, it exhibits surprisingly high catalytic activity for CO oxidation at a temperature as low as 100?K. The activity of gold catalysts also depends on support, preparation method and condition. Haruta and coworkers [1–4] found the high activity of supported gold catalysts for low-temperature CO oxidation. It is believed to occur on the metal-support interface. Cobalt oxides are good in removing the CO, , and VOCs in the air. The cobalt oxides have different oxidation states, such as CoO2, Co2O3, Co3O4, and CoO. The Co3O4 and CoO are more stable than the others. For the activity of CO oxidation reaction, the Co3O4 has a higher activity than CoO [5–8]. The Co3O4 has been reported to be an effective catalyst in the oxidation reaction. Furthermore, it has also been used as a support for gold. was reported to be active for CO oxidation, but not very active at room temperature. Although CO oxidation on Au catalysts has been extensively studied [9–13], none the of researchers has used -TiO2 binary oxide as the support. In this

References

[1]  M. Haruta, “Size- and support-dependency in the catalysis of gold,” Catalysis Today, vol. 36, no. 1, pp. 153–166, 1997.
[2]  M. Haruta, “Gold as a low-temperature oxidation catalyst: factors controlling activity and selectivity,” Studies in Surface Science and Catalysis, vol. 110, pp. 123–134, 1997.
[3]  M. Haruta, T. Kobayashi, H. Sano, and Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C,” Chemical Letters, vol. 10, pp. 405–408, 1987.
[4]  M. Haruta, “Nanoparticulate gold catalysts for low-temperature CO oxidation,” Journal of New Materials for Electrochemical Systems, vol. 7, no. 3, pp. 163–172, 2004.
[5]  Y. F. Yang, P. Sangeetha, and Y. W. Chen, “Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream,” International Journal of Hydrogen Energy, vol. 34, no. 21, pp. 8912–8920, 2009.
[6]  X. Xie, Y. Li, Z. Q. Liu, M. Haruta, and W. Shen, “Low-temperature oxidation of CO catalysed by Co3O4 nanorods,” Nature, vol. 458, no. 7239, pp. 746–749, 2009.
[7]  Y. F. Yang, P. Sangeetha, and Y. W. Chen, “Au/FeOx-TiO2 catalysts for the preferential oxidation of CO in a H2 stream,” Industrial and Engineering Chemistry Research, vol. 48, no. 23, pp. 10402–10407, 2009.
[8]  T. J. Huang and D. H. Tsai, “CO oxidation behavior of copper and copper oxides,” Catalysis Letters, vol. 87, no. 3-4, pp. 173–178, 2003.
[9]  K. Y. Ho and K. L. Yeung, “Effects of ozone pretreatment on the performance of Au/TiO2 catalyst for CO oxidation reaction,” Journal of Catalysis, vol. 242, no. 1, pp. 131–141, 2006.
[10]  M. M. Schubert, S. Hackenberg, A. C. Van Veen, M. Muhler, V. Plzak, and J. J. Behm, “CO oxidation over supported gold catalysts—“Inert” and “active” support materials and their role for the oxygen supply during reaction,” Journal of Catalysis, vol. 197, no. 1, pp. 113–122, 2001.
[11]  B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne, and R. J. Behm, “Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst,” Journal of Catalysis, vol. 224, no. 2, pp. 449–462, 2004.
[12]  L. H. Chang, Y. W. Chen, and N. Sasirekha, “Preferential oxidation of carbon monoxide in hydrogen stream over Au/MgOx-TiO2 catalysts,” Industrial and Engineering Chemistry Research, vol. 47, no. 12, pp. 4098–4105, 2008.
[13]  M. P. Casaletto, A. Longo, A. Martorana, A. Prestianni, and A. M. Venezia, “XPS study of supported gold catalysts: the role of Au0 and Au+ species as active sites,” Surface and Interface Analysis, vol. 38, no. 4, pp. 215–218, 2006.
[14]  J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. E. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics, 1995.
[15]  M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,” Journal of Catalysis, vol. 144, no. 1, pp. 175–192, 1993.
[16]  D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier, and R. Dormoy, “XPS study of thin films of titanium oxysulfides,” Surface Science, vol. 254, no. 1–3, pp. 81–89, 1991.
[17]  D. A. H. Cunningham, T. Kobayashi, N. Kamijo, and M. Haruta, “Influence of dry operating conditions: observation of oscillations and low temperature CO oxidation over Co3O4 and Au/Co3O4 catalysts,” Catalysis Letters, vol. 25, no. 3-4, pp. 257–264, 1994.
[18]  Y. F. Y. Yao, “The oxidation of hydrocarbons and CO over metal oxides. III. Co3O4,” Journal of Catalysis, vol. 33, no. 1, pp. 108–122, 1974.
[19]  D. Perti and R. L. Kabel, “Kinetics of CO oxidation over Co3O4/Al2O3,” AIChE Journal, vol. 31, pp. 1420–1440, 1985.
[20]  P. Sangeetha, B. Zhao, and Y. W. Chen, “Au/CuOx-TiO2 catalysts for preferential oxidation of CO in hydrogen stream,” Industrial and Engineering Chemistry Research, vol. 49, no. 5, pp. 2096–2102, 2010.
[21]  Y. W. Chen, D. S. Lee, and H. J. Chen, “Preferential oxidation of CO in H2stream on Au/ZnO-TiO2 catalysts,” International Journal of Hydrogen Energy, vol. 37, pp. 15140–15155, 2012.
[22]  Y. W. Chen, H. J. Chen, and D. S. Lee, “Au/Co3O4-TiO2 catalysts for preferential oxidation of CO in H2 stream,” Journal of Molecular Catalysis A, vol. 363- 364, pp. 470–480, 2012.
[23]  D. Tsukamato, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, and T. Hirai, “Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation,” Journal of American Chemical Society, vol. 134, pp. 6309–6315, 2012.
[24]  Y. Kuwauchi, H. Yoshida, T. Akita, M. Haruta, and S. Takeda, “Intrinsic catalytic structure of gold nanoparticles supported on TiO2,” Angew Chemistry International Edition, vol. 351, pp. 7729–7733, 2012.
[25]  L. F. Liotta, “New frontiers in gold catalyzed reactions,” Catalysts, vol. 2, pp. 299–302, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133