Influence of the Incorporation of Transition Metals on the Basicity of Mg,Al-Mixed Oxides and on Their Catalytic Properties for Transesterification of Vegetable Oils
The transesterification of vegetable oils produces fatty acid methyl esters (biodiesel). Biodiesel is a nonpolluting alternative fuel produced from renewable resources whose chemical and physical properties closely resemble those of the petroleum diesel fuel and does not contribute to the greenhouse effect. The use of solid catalysts makes biodiesel production processes environmentally friendly. In this work, Mg,Al-mixed oxides derived from Mg,Al-hydrotalcite-like compound with an M3+/( ) molar ratio of 0.25, in which Mg or Al was partially replaced by Co2+, Cu2+, Cr3+, or Fe3+, were prepared, characterized, and evaluated as catalysts for the transesterification of soybean oil with methanol. The results have indicated that the incorporation of transition metal influenced both textural and base properties. All the evaluated catalysts were active for the studied reaction. The catalytic activity followed the order Cr-MO < Co-MO < Cu-MO < Fe-MO < MO and could be explained by mesoporous volume. 1. Introduction Hydrotalcite-like compounds (HTLCs) are layered double hydroxides (LDHs) that have been investigated during the last two decades as adsorbents, anion exchangers, and catalysts or catalyst precursors for different types of chemical reactions. The general formula of the HTLCs is where the divalent ion can be , , , , , or , the trivalent ion can be , , or , the compensation anion can be , , , , or , and can take values between 0.17 and 0.33 [1]. Mg,Al-hydrotalcite is the most common LDH, and it can also be synthesized in a ternary form in which Mg or Al is partially replaced by a transition metal cation. Thermally treating HTLCs induces dehydration, dehydroxylation, and loss of compensation anions, forming mixed oxides/hydroxides with basic properties and a poorly crystallized structure [2]. These oxides present small particle size, large specific surface area, and basic properties attributed to hydroxyl groups, different - acid-base pairs, and anions [3–6]. The acid-base properties and, as a consequence, the catalytic activity and selectivity of these Mg,Me,Al-mixed oxides depend on chemical composition (type of Me cation and Mg/Me/Al molar ratio) and on the conditions of the thermal treatment used to decompose the hydrotalcite precursor. So, they can be tailored to the process under study aiming at increasing their activity and/or selectivity. Their main applications as basic catalyst include aldol, nitroaldol, Knoevenagel, and Claisen-Schmidt condensations, alkylation of ketones and phenols, Michael additions, glycerolysis of fats for the manufacture
References
[1]
F. Cavani, F. Trifirò, and A. Vaccari, “Hydrotalcite-type anionic clays: preparation, properties and applications,” Catalysis Today, vol. 11, no. 2, pp. 173–301, 1991.
[2]
D. Tichit, M. H. Lhouty, A. Guida et al., “Textural properties and catalytic activity of hydrotalcites,” Journal of Catalysis, vol. 151, no. 1, pp. 50–59, 1995.
[3]
I. Di Cosimo, V. K. Diez, M. Xu, et al., “Structure and surface and catalytic properties of Mg-Al basic oxides,” Journal of Catalysis, vol. 178, no. 2, pp. 499–510, 1998.
[4]
A. Corma, S. Iborra, J. Primo, and F. Rey, “One-step synthesis of citronitril on hydrotalcite derived base catalysts,” Applied Catalysis A, vol. 114, no. 2, pp. 215–225, 1994.
[5]
M. J. Climent, A. Corma, S. Iborra, and J. Primo, “Base catalysis for fine chemicals production: claisen-schmidt condensation on zeolites and hydrotalcites for the production of chalcones and flavanones of pharmaceutical interest,” Journal of Catalysis, vol. 151, no. 1, pp. 60–66, 1995.
[6]
M. J. Climent, A. Corma, S. Iborra, K. Epping, and A. Velty, “Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures,” Journal of Catalysis, vol. 225, no. 2, pp. 316–326, 2004.
[7]
C. N. Pérez, C. A. Pérez, C. A. Henriques, et al., “Hydrotalcites as precursors for Mg, Al-mixed oxides used as catalysts on the aldol condensation of citral with acetone,” Applied Catalysis A, vol. 272, no. 1-2, pp. 229–240, 2004.
[8]
C. O. Veloso, C. A. Henriques, A. G. Dias, and J. L. F. Monteiro, “Condensation of glyceraldehyde acetonide and acetone over basic catalysts,” Catalysis Today, vol. 107-108, pp. 294–301, 2005.
[9]
J. L. Shumaker, C. Crofcheck, S. A. Tackett et al., “Biodiesel synthesis using calcined layered double hydroxide catalysts,” Applied Catalysis B, vol. 82, no. 1-2, pp. 120–130, 2008.
[10]
W. M. Antunes, C. D. O. Veloso, and C. A. Henriques, “Transesterification of soybean oil with methanol catalyzed by basic solids,” Catalysis Today, vol. 133-135, no. 1–4, pp. 548–554, 2008.
[11]
E. Crabbe, C. Nolasco-Hipolito, G. Kobayashi, K. Sonomoto, and A. Ishizaki, “Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties,” Process Biochemistry, vol. 37, no. 1, pp. 65–71, 2001.
[12]
H. J. Kim, B. S. Kang, M. J. Kim et al., “Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst,” Catalysis Today, vol. 93-95, pp. 315–320, 2004.
[13]
G. Arzamendi, I. Campo, E. Argui?arena, M. Sánchez, M. Montes, and L. M. Gandía, “Synthesis of biodiesel from sunflower oil with silica-supported NaOH catalysts,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 6, pp. 862–870, 2008.
[14]
E. Leclercq, A. Finiels, and C. Moreau, “Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts,” Journal of the American Oil Chemists' Society, vol. 78, no. 11, pp. 1161–1165, 2006.
[15]
W. Xie, H. Peng, and L. Chen, “Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil,” Journal of Molecular Catalysis A, vol. 246, no. 1-2, pp. 24–32, 2006.
[16]
M. Di Serio, M. Ledda, M. Cozzolino, G. Minutillo, R. Tesser, and E. Santacesaria, “Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts,” Industrial and Engineering Chemistry Research, vol. 45, no. 9, pp. 3009–3014, 2006.
[17]
D. Siano, M. Nastasi, E. Santacesaria et al., “Process for producing esters from vegetable oils or animal fats using heterogeneous catalysts,” PCT Application No. WO2006/050925, 2006.
[18]
E. Li, Z. P. Xu, and V. Rudolph, “MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel,” Applied Catalysis B, vol. 88, no. 1-2, pp. 42–49, 2009.
[19]
A. K. Singh and S. D. Fernando, “Transesterification of soybean oil using heterogeneous catalysts,” Energy and Fuels, vol. 22, no. 3, pp. 2067–2069, 2008.
[20]
S. Yan, H. Lu, and B. Liang, “Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production,” Energy and Fuels, vol. 22, no. 1, pp. 646–651, 2008.
[21]
Z. Yang and W. Xie, “Soybean oil transesterification over zinc oxide modified with alkali earth metals,” Fuel Processing Technology, vol. 88, no. 6, pp. 631–638, 2007.
[22]
H. Y. Zeng, Z. Feng, X. Deng, and Y. Q. Li, “Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil,” Fuel, vol. 87, no. 13-14, pp. 3071–3076, 2008.
[23]
G. S. Macala, A. W. Robertson, C. L. Johnson et al., “Transesterification catalysts from iron doped hydrotalcite-like precursors: solid bases for biodiesel production,” Catalysis Letters, vol. 122, no. 3-4, pp. 205–209, 2008.
[24]
A. E. Palomares, J. M. López-Nieto, F. J. Lázaro, A. López, and A. Corma, “Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived from hydrotalcites,” Applied Catalysis B, vol. 20, no. 4, pp. 257–266, 1999.
[25]
T. J. B. Holland and S. A. T. Redfern, “Unit cell refinement from powder diffraction data: the use of regression diagnostics,” Mineralogical Magazine, vol. 61, no. 1, pp. 65–77, 1997.
[26]
ICDD PDF-2 Database, International Centre for Diffraction Data, Newton Square, Pa, USA, 1998.
[27]
I. Pausch, H. H. Lohse, K. Schurmann, and R. Allmann, “Synthesis of disordered and Al-rich hydrotalcite-like compounds,” Clays & Clay Minerals, vol. 34, no. 5, pp. 507–510, 1986.
[28]
S. Velu, N. Shah, T. M. Jyothi, and S. Sivasanker, “Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides,” Microporous and Mesoporous Materials, vol. 33, no. 1–3, pp. 61–75, 1999.
[29]
L. Chmielarz, P. Ku?trowski, A. Rafalska-?asocha, and R. Dziembaj, “Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems,” Thermochimica Acta, vol. 395, no. 1-2, pp. 225–236, 2003.
[30]
J. S. Valente, J. Hernandez-Cortez, M. S. Cantu, G. Ferrat, and E. López-Salinas, “Calcined layered double hydroxides Mg-Me-Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts,” Catalysis Today, vol. 150, no. 3-4, pp. 340–345, 2010.
[31]
O. Pavel, D. Tichit, and I. Marcu, “Acido-basic and catalytic properties of transition-metal containing Mg-Al hydrotalcites and their corresponding mixed oxides,” Applied Clay Science, vol. 61, pp. 52–58, 2012.
[32]
A. Gervasini, J. Fenyvesi, and A. Auroux, “Study of the acidic character of modified metal oxide surfaces using the test of isopropanol decomposition,” Catalysis Letters, vol. 43, no. 1-2, pp. 219–228, 1997.
[33]
D. Carriazo, C. Martín, and V. Rives, “An FT-IR study of the adsorption of isopropanol on calcined layered double hydroxides containing isopolymolybdate,” Catalysis Today, vol. 126, no. 1-2, pp. 153–161, 2007.