Transition metals (Fe, Co, or Ni) modified K/Mo2C catalysts were prepared and investigated as catalysts for CO hydrogenation. The addition of Fe, Co, or Ni to K/Mo2C catalyst led to a sharp increase in both the activity and selectivity of , but the promotion effects were quite different and followed the sequence: Ni > Co > Fe for the activity and Fe > Co > Ni for the alcohol selectivity. For the products distributions, it also displayed some differences; Co promoter showed much higher hydrocarbon selectivity than Fe or Ni promoter, but Fe or Co promoter gave lower methane selectivity than Ni promoter, and Fe promoter showed the highest selectivity. 1. Introduction The production of fuels from coal via syngas is one of the most industrial challenges for near future. As for Fischer-Tropsch reaction, reaction proceeds on transition metal supported catalysts, the catalysts currently investigated being Co, Fe, or Ru supported on oxides, such as Al2O3, SiO2, TiO2, and ZrO2 [1–3]. However, the application of such an attractive synthesis still suffers from the lack of high performance catalysts. Thus, great efforts are still being made to improve both activity and selectivity of catalysts. Since 1973, when Levy and Boudart [4] reported that WC displayed reactivity similar to Pt for hydrogenation reactions, there has been considerable interest in the catalytic properties of metal carbides, particularly of the group VI transition metals. Synthesis of hydrocarbons from CO hydrogenation over Co or Ru promoted molybdenum carbides has been evidenced by Griboval-Constant et al. [5], and the results reveal that molybdenum carbide gives light hydrocarbons and alcohols; the addition of Ru decreases the alcohol production yet Co increases formation of heavy hydrocarbons. As reported elsewhere [6], promotion of molybdenum carbide by potassium has been found to greatly enhance the selectivity to alcohols. For MoS2-based catalysts, the addition of transition metals, such as Co, Ni, Rh, and Pd, is found to be able to improve the catalytic activity and selectivity of alcohols [7–9]. In this regard, it also can be speculated that the transition metals may have positive effect on both alcohols and heavy hydrocarbons formation from CO hydrogenation over Mo2C-based catalysts, and still much less information is available. Thus, the aim of this work is to study the influence of addition of transition metals, such as Fe, Co, or Ni, on K/Mo2C catalyst in terms of catalytic activity and selectivity in CO hydrogenation reaction. 2. Experimental 2.1. Sample Preparation The molybdenum
References
[1]
H. Abrevaya, M. J. Cohn, W. M. Targos, and H. J. Robota, “Structure sensitive reactions over supported ruthenium catalysts during Fischer-Tropsch synthesis,” Catalysis Letters, vol. 7, no. 1–4, pp. 183–195, 1990.
[2]
D. Vanhove, Z. Zhuyong, L. Makambo, and M. Blanchard, “Hydrocarbon selectivity in fischer-tropsch synthesis in relation to textural properties of supported cobalt catalysts,” Applied Catalysis, vol. 9, no. 3, pp. 327–342, 1984.
[3]
E. Iglesia, S. C. Reyes, R. J. Madon, and S. L. Soled, “Selectivity control and catalyst design in the Fischer-Tropsch synthesis: sites, pellets, and reactors,” Advances in Catalysis, vol. 39, pp. 221–302, 1993.
[4]
R. B. Levy and M. Boudart, “Platinum-like behavior of tungsten carbide in surface catalysis,” Science, vol. 181, no. 4099, pp. 547–549, 1973.
[5]
A. Griboval-Constant, J.-M. Giraudon, G. Leclercq, and L. Leclercq, “Catalytic behaviour of cobalt or ruthenium supported molybdenum carbide catalysts for FT reaction,” Applied Catalysis A, vol. 260, no. 1, pp. 35–45, 2004.
[6]
M. Xiang, D. Li, W. Li, B. Zhong, and Y. Sun, “Performances of mixed alcohols synthesis over potassium promoted molybdenum carbides,” Fuel, vol. 85, no. 17-18, pp. 2662–2665, 2006.
[7]
Z. R. Li, Y. L. Fu, and M. Jiang, “Structures and performance of Pd-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas,” Catalysis Letters, vol. 65, pp. 43–48, 2000.
[8]
Z.-R. Li, Y.-L. Fu, and M. Jiang, “Structures and performance of Rh-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas,” Applied Catalysis A, vol. 187, no. 2, pp. 187–198, 1999.
[9]
E. C. Alyea, D. He, and J. Wang, “Alcohol synthesis from syngas. I. Performance of alkali-promoted Ni-Mo(MOVS) catalysts,” Applied Catalysis A, General, vol. 104, no. 1, pp. 77–85, 1993.
[10]
M. Xiang, D. Li, H. Xiao et al., “Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/β-Mo2C catalysts,” Fuel, vol. 87, pp. 599–603, 2008.
[11]
D. Li, Study of nickel promoted K2CO3/MOS2 catalysts for higher alcohols synthesis from CO/H2 [Ph.D. Dissertation], Institute of Coal Chemistry, Chinese Academy of Sciences, 2004.
[12]
M. Saito and R. B. Anderson, “The activity of several molybdenum compounds for the methanation of CO,” Journal of Catalysis, vol. 63, no. 2, pp. 438–446, 1980.
[13]
I. Kijima and E. Miyazaki, “Catalysis by transition metal carbides: V. Kinetic measurements of hydrogenation of CO over TaC, TiC, and Mo2C catalysts,” Journal of Catalysis, vol. 89, pp. 168–171, 1984.
[14]
C. Liang, W. Ma, Z. Feng, and C. Li, “Activated carbon supported bimetallic CoMo carbides synthesized by carbothermal hydrogen reduction,” Carbon, vol. 41, no. 9, pp. 1833–1839, 2003.
[15]
J. Bao, Y. Fu, Z. Sun, and C. Gao, “A highly active K-Co-Mo/C catalyst for mixed alcohol synthesis from CO + H2,” Chemical Communications, vol. 9, no. 6, pp. 746–747, 2003.
[16]
M. Xiang, J. Zou, Q. Li, and X. She, “Catalytic performance of iron carbide for carbon monoxide hydrogenation,” Journal of Natural Gas Chemistry, vol. 19, no. 5, pp. 468–470, 2010.
[17]
M. Xiang, D. Li, W. Li, B. Zhong, and Y. Sun, “Synthesis of higher alcohols from syngas over K/Co/β-Mo2C catalysts,” Catalysis Communications, vol. 8, no. 3, pp. 503–507, 2007.
[18]
L. J. E. Hofer and W. C. Peebles, “X-ray diffraction studies of the action of carbon monoxide on cobalt-thoria-kieselguhr catalysts,” Journal of the American Chemical Society, vol. 69, no. 10, pp. 2497–2500, 1947.
[19]
K. Oshikawa, M. Nagai, and S. Omi, “Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS,” Journal of Physical Chemistry B, vol. 105, no. 38, pp. 9124–9131, 2001.
[20]
T. P. St. Clair, S. T. Oyama, D. F. Cox et al., “Surface characterization of α-Mo2C (0001),” Surface Science, vol. 426, no. 2, pp. 187–198, 1999.
[21]
P. Delporte, C. Pham-Huu, and M. J. Ledoux, “Effect of the reaction temperature and hydrocarbon partial pressure on the activity of carbon-modified MoO3 for n-hexane isomerization,” Applied Catalysis A, vol. 149, no. 1, pp. 151–180, 1997.
[22]
M. J. Ledoux, C. P. Huu, J. Guille, and H. Dunlop, “Compared activities of platinum and high specific surface area Mo2C and WC catalysts for reforming reactions. I. Catalyst activation and stabilization: reaction of n-hexane,” Journal of Catalysis, vol. 134, no. 2, pp. 383–398, 1992.
[23]
M. ?aniecki, M. Ma?ecka-Grycz, and F. Domka, “Water-gas shift reaction over sulfided molybdenum catalysts I. Alumina, titania and zirconia-supported catalysts,” Applied Catalysis A, vol. 196, no. 2, pp. 293–303, 2000.