Telomere loss may lead to chromosomal instability via the breakage-fusion-bridge (BFB) cycle which can result in genetic amplification and the formation of ring and dicentric chromosomes. This cycle continues until stable chromosomes are formed. The case of a 72-year-old female with refractory anaemia with excess blasts type 2 illustrates these events. Conventional cytogenetics produced a complex karyotype which included unstable abnormalities of chromosomes 11, 12, and 15. Fluorescence in situ hybridization (FISH) analyses including multicolor-FISH (M-FISH) and multicolor-banding (M-BAND) revealed multiple clonal populations with 5 copies of MLL on either a ring chromosome composed entirely of chromosome 11 material or a derivative chromosome composed of chromosomes 11, 12, and 15. The FISH results also clarified the likely evolution of the karyotypic complexity. The simplest cell line contained a dic(12;15) in addition to copy number aberrations that are typical of MDS or AML. As the disease progressed, a ring 11 was formed. Subsequently, the ring 11 appears to have unwound and inserted itself into the dic(12;15) chromosome followed by an inversion of the derivative chromosome, producing a der(11;15;12). Telomeric loss and BFB cycles appear to have played an important role in the chromosomal rearrangements and clonal evolution demonstrated in the karyotype. 1. Introduction Telomeres are composed of repetitive G-rich sequences and proteins that form a dynamic cap to maintain chromosome stability as well as prevent the chromosome ends from degradation and fusion [1]. Telomere loss may lead to the formation of ring and dicentric chromosomes, causing chromosomal instability and genetic amplification via the breakage-fusion-bridge (BFB) cycle [1, 2]. The BFB cycle can be initiated when a chromosome has lost a telomere and is replicated. The ends of the sister chromatids without a telomere may fuse together. A bridge is then formed which breaks during anaphase as the sister chromatids are pulled to opposite poles (Figure 1) [3]. This breakage often occurs very close to the site of fusion [1, 4–6]. The chromatid with the duplication may continue undergoing BFB cycles until a new telomere is acquired to improve stability [4, 7]. A nonhomologous or microhomology mediated end-joining mechanism has been implicated in the repair of broken chromosome ends that is integral to this process [4, 6, 8, 9]. Figure 1: Telomeric loss leading to genetic amplification through breakage-fusion-bridge cycles. Adapted from Bailey and Murnane [ 1]. MLL amplification is found in
References
[1]
S. M. Bailey and J. P. Murnane, “Telomeres, chromosome instability and cancer,” Nucleic Acids Research, vol. 34, no. 8, pp. 2408–2417, 2006.
[2]
B. McClintock, “The stability of broken ends of chromosomes in Zea Mays,” Genetics, vol. 26, no. 2, pp. 234–282, 1941.
[3]
C. H. Jones, C. Pepper, and D. M. Baird, “Telomere dysfunction and its role in haematological cancer,” British Journal of Haematology, vol. 156, no. 5, pp. 573–587, 2012.
[4]
J. P. Murnane, “Telomere dysfunction and chromosome instability,” Mutation Research, vol. 730, no. 1-2, pp. 28–36, 2012.
[5]
A. W. I. Lo, L. Sabatier, B. Fouladi, G. Pottiert, M. Ricoul, and J. P. Murnane, “DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line,” Neoplasia, vol. 4, no. 6, pp. 531–538, 2002.
[6]
B. T. Letsolo, J. Rowson, and D. M. Baird, “Fusion of short telomeres in human cells is characterized by extensive deletion and microhomology, and can result in complex rearrangements,” Nucleic Acids Research, vol. 38, no. 6, pp. 1841–1852, 2009.
[7]
D. Gisselsson, M. H?glund, F. Mertens et al., “The structure and dynamics of ring chromosomes in human neoplastic and non-neoplastic cells,” Human Genetics, vol. 104, no. 4, pp. 315–325, 1999.
[8]
S. Chakraborty, J. M. Stark, C. L. Sun, et al., “Chronic myelogenous leukemia stem and progenitor cells demonstrate chromosomal instability related to repeated breakage-fusion-bridge cycles mediated by increased nonhomologous end joining,” Blood, vol. 119, no. 26, pp. 6187–6197, 2012.
[9]
J. P. Murnane, “Telomere loss as a mechanism for chromosome instability in human cancer,” Cancer Research, vol. 70, no. 11, pp. 4255–4259, 2010.
[10]
A. Mohamed, “MLL amplification in leukemia,” 2011, http://atlasgeneticsoncology.org//Anomalies/MLLampliID1547.html.
[11]
K. C. Rayeroux and L. J. Campbell, “Gene amplification in myeloid leukemias elucidated by fluorescence in situ hybridization,” Cancer Genetics and Cytogenetics, vol. 193, no. 1, pp. 44–53, 2009.
[12]
M. K. Andersen and J. Pedersen-Bjergaard, “Increased frequency of dicentric chromosomes in therapy-related MDS and AML compared to de novo disease is significantly related to previous treatment with alkylating agents and suggests a specific susceptibility to chromosome breakage at the centromere,” Leukemia, vol. 14, no. 1, pp. 105–111, 2000.
[13]
R. N. MacKinnon, C. Patsouris, I. Chudoba, and L. J. Campbell, “A FISH comparison of variant derivatives of the recurrent dic(17;20) of myelodysplastic syndromes and acute myeloid leukemia: obligatory retention of genes on 17p and 20q may explain the formation of dicentric chromosomes,” Genes Chromosomes and Cancer, vol. 46, no. 1, pp. 27–36, 2007.
[14]
B. A. Sullivan and H. F. Willard, “Stable dicentric X chromosomes with two functional centromeres,” Nature Genetics, vol. 20, no. 3, pp. 227–228, 1998.
[15]
R. N. MacKinnon and L. J. Campbell, “A comparison of two contrasting recurrent isochromosomes 20 found in myelodysplastic syndromes suggests that retention of proximal 20q is a significant factor in myeloid malignancies,” Cancer Genetics and Cytogenetics, vol. 163, no. 2, pp. 176–179, 2005.
[16]
W. C. Earnshaw and B. R. Migeon, “Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome,” Chromosoma, vol. 92, no. 4, pp. 290–296, 1985.
[17]
L. G. Schaffer, M. L. Slovak, and L. J. Campbell, Eds., ISCN 2009: An International System for Human Cytogenetic Nomenclature, Karger, Basel, Switzerland, 2009.
[18]
R. W. Frenck Jr., E. H. Blackburn, and K. M. Shannon, “The rate of telomere sequence loss in human leukocytes varies with age,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 10, pp. 5607–5610, 1998.
[19]
D. Gisselsson, L. Pettersson, M. H?glund et al., “Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5357–5362, 2000.
[20]
B. Britt-Compton, T. T. Lin, G. Ahmed et al., “Extreme telomere erosion in ATM-mutated and 11q-deleted CLL patients is independent of disease stage,” Leukemia, vol. 26, no. 4, pp. 826–830, 2012.
[21]
R. T. Calado, J. N. Cooper, H. M. Padilla-Nash et al., “Short telomeres result in chromosomal instability in hematopoietic cells and precede malignant evolution in human aplastic anemia,” Leukemia, vol. 26, no. 4, pp. 700–707, 2012.
[22]
P. J. Campbell, S. Yachida, L. J. Mudie et al., “The patterns and dynamics of genomic instability in metastatic pancreatic cancer,” Nature, vol. 467, no. 7319, pp. 1109–1113, 2010.
[23]
G. Leone, L. Fianchi, L. Pagano, and M. T. Voso, “Incidence and susceptibility to therapy-related myeloid neoplasms,” Chemico-Biological Interactions, vol. 184, no. 1-2, pp. 39–45, 2010.