Angiogenesis is the growth of new blood vessels in the body. Abnormal angiogenesis is recognised as a “common denominator” in many disease processes, and the development of angiogenesis inhibitors holds great hope in the ongoing battle against cancer. The field of angiogenesis has roots in the Hunterian era of the late eighteenth century but did not begin to blossom until the early 1970s when the then controversial findings and conclusions of Judah Folkman, the “father of angiogenesis,” were first published. There were only 65 publications with angiogenesis in the title in the 10 years after Folkman first proposed the idea of tumour angiogenesis, compared to over 9,000 publications from the year 2000 to 2010. In this review we will explore the voyage of discovery from the first observations of John Hunter in the eighteenth century, via the struggle faced by Folkman to prove the importance of angiogenesis, and finally how his determination has led to modern angiogenesis inhibitors being used in everyday clinical practice. 1. Angiogenesis Angiogenesis is the formation of new blood vessels from preexisting vessels and is a normal and highly regulated physiological process throughout the body. Since physiological angiogenesis is associated only with tissue growth, tissue repair, and the reproductive cycle, angiogenesis in normal adult tissues is a very rare event, and the endothelium of most tissues is therefore an extremely stable population of cells with very low mitotic activity [1]. Angiogenesis also occurs after implantation of the blastocyst of the embryo to the uterus. This produces the placenta [2, 3] and was first observed in pregnant monkeys by Hertig in 1935 [4]. In the developing embryo both angiogenesis and the earlier distinct process of vasculogenesis are required for foetal growth and viability [5]. 2. The Beginnings of Angiogenesis: From Hunter to Folkman—A Slow Beginning The founder of “scientific surgery” John Hunter (1728–1793), who sought to provide an experimental basis to surgical practice, first used the term angiogenesis in 1787 [1]. He stated that vessels “would appear to have more powers of perfecting themselves, when injured, than any other part of the body; for their use is almost immediate and constant, and it is they which perform the operation of restoration on the other parts, therefore they themselves must first be perfect” [6]. He noted the early appearance of new blood vessels to supply the growing antlers from the Fallow Deer’s skull, observing “a soft membranous pulp shooting out from this knob which is extremely
References
[1]
A. P. Hall, “The role of angiogenesis in cancer,” Comparative Clinical Pathology, vol. 13, no. 3, pp. 95–99, 2005.
[2]
D. S. Torry, J. Leavenworth, M. Chang et al., “Angiogenesis in implantation,” Journal of Assisted Reproduction and Genetics, vol. 24, no. 7, pp. 303–315, 2007.
[3]
P. A. W. Rogers, S. Abberton, and B. Susil, “Endothelial cell migratory signal produced by human endometrium during the menstrual cycle,” Human Reproduction, vol. 7, no. 8, pp. 1061–1066, 1992.
[4]
A. Hertig, “Angiogenesis in the early human chorion and in the primary placenta of the Macque monkey,” Contributions To Embryology, vol. 25, p. 37, 1935.
[5]
G. Breier, “Angiogenesis in embryonic development—a review,” Placenta, vol. 21, no. 1, pp. S11–S15, 2000.
[6]
J. Hunter, The Works of John Hunter. Volume II. Observations in Comparative Anatomy, John van Voorst, London, UK, 1861.
[7]
J. Hunter, The Works of John Hunter. Volume I. Essays and Observations on Natural History, John van Voorst, London, UK, 1861.
[8]
K. Thiersch, Der Epithelialkrebs, namenthlich der Haut mit Atlas, Leipzig, Germany, 1865.
[9]
R. Virchow, Die Krankhaften Geschwuste, August Hirschwald, Berlin, Geramny, 1863.
[10]
C. A. T. Bilroth, “General surgical pathology and therapeutics,” in Fifty Lectures. A Text-Book For Students and Physicians, D Appleton and company, New York, NY, USA, 1871.
[11]
E. Goldmann, “The growth of malignant disease in man and the lower animals,” The Lancet, vol. 170, no. 4392, pp. 1236–1240, 1907.
[12]
E. Bashford, J. Murray, and W. Cramer, “The growth of cancer under natural and experimental conditions,” Imperial Cancer Research Fund Scientific Reports, vol. 2, pp. 24–29, 1904.
[13]
W. H. Lewis, “The vascular patterns of tumors,” Bulletin of the Johns Hopkins Hospital, vol. 41, pp. 156–170, 1927.
[14]
E. R. Clark and E. L. Clark, “Observations on living preformed blood vessels as seen in a transparent chamber inserted into the rabbit ear,” American Journal of Anatomy, vol. 49, pp. 441–447, 1932.
[15]
H. Ide, N. Baker, and S. Warren, “Vascularisation of the Brown-Pierce rabbit epithelioma transplant as seen in the rabbit ear chamber,” American Journal of Roentgenological Radium Therapy, vol. 42, pp. 891–899, 1939.
[16]
G. H. Algire, “An adaptation of the transparent-chamber technique to the mouse,” Journal of the National Cancer Institute, vol. 4, pp. 1–11, 1943.
[17]
G. H. Algire, “Microscopic studies of the early growth of a transplantable melanoma of the mouse, using the transparent-chamber technique,” Journal of the National Cancer Institute, vol. 4, pp. 13–20, 1943.
[18]
G. H. Algire, H. W. Chalkley, and F. Y. Legallais, “Vascular Reactions of normal and malignant tumours in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants,” Journal of the National Cancer Institute, vol. 6, pp. 72–85, 1945.
[19]
H. S. N. Greene, “Heterologous transplantation of mammalian tumors,” Journal of Experimental Medicine, vol. 73, pp. 461–473, 1941.
[20]
H. S. Greene, “The significance of the heterologous transplantability of human cancer,” Cancer, vol. 5, no. 1, pp. 24–44, 1952.
[21]
H. S. Greene, “A conception of tumor autonomy based on transplantation studies: a review,” Cancer Research, vol. 11, no. 12, pp. 899–903, 1951.
[22]
D. R. Cowdry and W. F. Sheldon, “The significance of hyperaemia around tumour transplants,” American Journal of Pathology, vol. 22, p. 821, 1946.
[23]
B. R. Lutz, D. I. Patt, A. H. Handler, and D. F. Stevens, “Serial sarcoma transplantation in the hamster cheek pouch and the effects of advanced neoplasia on the small blood vessels,” Anatomical Record, vol. 108, p. 54, 1950.
[24]
H. R. Bierman, K. H. Kelly, K. S. Dod, and R. L. Byron Jr., “Studies on the blood supply of tumors in man. I. Fluorescence of cutaneous lesions,” Journal of the National Cancer Institute, vol. 11, no. 5, pp. 877–889, 1951.
[25]
F. Urbach and J. H. Graham, “Anatomy of human skin tumour capillaries,” Nature, vol. 194, no. 4829, pp. 652–654, 1962.
[26]
P. Rubin and G. Casarett, “Microcirculation of tumors Part I: anatomy, function, and necrosis,” Clinical Radiology, vol. 17, no. 3, pp. 220–229, 1966.
[27]
J. Folkman, “Tumor angiogenesis: from bench to bedside,” in Tumour Angiogenesis: Basic Mechanisms and Cancer Therapy, D. Marme and N. Fusenig, Eds., Springer, Heidelberg, Germany, 2007.
[28]
H. L. Van Epps, “What tumors need: a brief history of angiogenesis,” Journal of Experimental Medicine, vol. 201, no. 7, p. 1024, 2005.
[29]
M. J. Folkman, D. M. Long, and F. F. Becker, “Tumor growth in organ culture,” Surgical Forum, vol. 13, pp. 81–83, 1962.
[30]
R. Cooke, Dr Folkman’s War. Angiogenesis and the Struggle to Defeat Cancer, Random House, 2001.
[31]
J. Folkman and D. M. Long, “The use of silicone rubber as a carrier for prolonged drug therapy,” Journal of Surgical Research, vol. 4, no. 3, pp. 139–142, 1964.
[32]
J. Folkman, “Tumor angiogenesis: therapeutic implications,” New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971.
[33]
J. Folkmann, “History of angiogenesis,” in Angiogenesis: An Integrative Approach From Science to Medicine, W. D. Figg and J. Folkman, Eds., Springer, 2008.
[34]
M. A. Gimbrone Jr., S. B. Leapman, R. S. Cotran, and J. Folkman, “Tumor dormancy in vivo by prevention of neovascularization,” Journal of Experimental Medicine, vol. 136, no. 2, pp. 261–276, 1972.
[35]
M. A. Gimbrone Jr., S. B. Leapman, R. S. Cotran, and J. Folkman, “Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors,” Journal of the National Cancer Institute, vol. 50, no. 1, pp. 219–228, 1973.
[36]
M. A. Gimbrone Jr., R. S. Cotran, S. B. Leapman, and J. Folkman, “Tumor growth and neovascularization: an experimental model using the rabbit cornea,” Journal of the National Cancer Institute, vol. 52, no. 2, pp. 413–427, 1974.
[37]
M. A. Gimbrone Jr., R. S. Cotran, and J. Folkman, “Human vascular endothelial cells in culture. Growth and DNA synthesis,” Journal of Cell Biology, vol. 60, no. 3, pp. 673–684, 1974.
[38]
M. Greenblatt and P. Shubi, “Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique,” Journal of the National Cancer Institute, vol. 41, no. 1, pp. 111–124, 1968.
[39]
R. L. Ehrmann and M. Knoth, “Choriocarcinoma. Transfilter stimulation of vasoproliferation in the hamster cheek pouch. Studied by light and electron microscopy,” Journal of the National Cancer Institute, vol. 41, no. 6, pp. 1329–1341, 1968.
[40]
V. Muthukkaruppan and R. Auerbach, “Angiogenesis in the mouse cornea,” Science, vol. 205, no. 4413, pp. 1416–1418, 1979.
[41]
R. Langer and J. Folkman, “Polymers for the sustained release of proteins and other macromolecules,” Nature, vol. 263, no. 5580, pp. 797–800, 1976.
[42]
E. A. Jaffe, R. L. Nachman, C. G. Becker, and C. R. Minick, “Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria,” Journal of Clinical Investigation, vol. 52, no. 11, pp. 2745–2756, 1973.
[43]
J. Folkman, C. C. Haudenschild, and B. R. Zetter, “Long-term culture of capillary endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 10, pp. 5217–5221, 1979.
[44]
J. Folkman and C. Haudenschild, “Angiogenesis in vitro,” Nature, vol. 288, no. 5791, pp. 551–556, 1980.
[45]
D. H. Ausprunk, K. Falterman, and J. Folkman, “The sequence of events in the regression of corneal capillaries,” Laboratory Investigation, vol. 38, no. 3, pp. 284–294, 1978.
[46]
N. Ferrara, “Vascular endothelial growth factor,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 6, pp. 789–791, 2009.
[47]
D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. Susan Harvey, and H. F. Dvorak, “Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid,” Science, vol. 219, no. 4587, pp. 983–985, 1983.
[48]
N. Ferrara and W. J. Henzel, “Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 161, no. 2, pp. 851–858, 1989.
[49]
P. J. Keck, S. D. Hauser, G. Krivi et al., “Vascular permeability factor, an endothelial cell mitogen related to PDGF,” Science, vol. 246, no. 4935, pp. 1309–1312, 1989.
[50]
R. A. Rosenthal, J. F. Megyesi, W. J. Henzel, N. Ferrara, and J. Folklman, “Conditioned medium from mouse sarcoma 180 cells contains vascular endothelial growth factor,” Growth Factors, vol. 4, no. 1, pp. 53–59, 1990.