全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Derailing the UPS of Protein Turnover in Cancer and other Human Diseases

DOI: 10.1155/2013/167576

Full-Text   Cite this paper   Add to My Lib

Abstract:

Protein modifications by the covalent linkage of ubiquitin have significant involvement in many cellular processes, including stress response, oncogenesis, viral infection, transcription, protein turnover, organelle biogenesis, DNA repair, cellular differentiation, and cell cycle control. We provide a brief overview of the fundamentals of the regulation of protein turnover by the ubiquitin-proteasome pathway and discuss new therapeutic strategies that aim to mitigate the deleterious effects of its dysregulation in cancer and other human disease pathophysiology. 1. Introduction The timely degradation of many transiently induced and/or oscillatory proteins is fundamental to the maintenance of diverse biological processes, including receptor trafficking, cell cycle progression, DNA repair, gene transcription, autophagy, and programmed cell death [1–7]. Dysregulation of such regulatory mechanisms has been reported to underlie a growing list of human diseases including cancers, neurodegenerative diseases, and inflammatory and autoimmune disorders. Clearance of intracellular proteins in the cell occurs primarily in three highly specialized subcellular organelles—the proteasome, the lysosome, and the autophagosome. A small protein modifier, ubiquitin, appears to be the common denominator in the targeting of substrates to these degradation pathways in mammalian cells. In this review, we discuss the molecular basis of the ubiquitin-proteasome degradation pathway, the human diseases commonly associated with its dysregulation, and the potential for pharmacologic targeting of the ubiquitin-proteasome pathway as a novel therapeutic approach. 2. Biological Functions of the Ubiquitin-Proteasome System (UPS) 2.1. The Core UPS Machinery As depicted in Figure 1, ubiquitination of target proteins is achieved through the functional orchestration of three classes of enzymes: E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugation enzyme), and E3 (ubiquitin ligase). Ubiquitin, in an initial energy-dependent step, associates with these enzymatic components through a labile thioester linkage. This facilitates its covalent ligation to the target through a more stable isopeptide linkage to the ε-amino group of acceptor lysine residues or, less frequently, the amino terminus. The enzymatic cascade of ubiquitination is characterized by extensive combinatorial complexity and specificity, as dictated by the diversity of its constituent enzymes: two known E1s, tens of E2s, and hundreds of E3s [2]. Figure 1: Targeting the UPS of protein turnover in cancer and other human diseases.

References

[1]  K. Haglund and I. Dikic, “The role of ubiquitylation in receptor endocytosis and endosomal sorting,” Journal of Cell Science, vol. 125, part 2, pp. 265–275, 2012.
[2]  R. J. Deshaies and C. A. P. Joazeiro, “RING domain E3 ubiquitin ligases,” Annual Review of Biochemistry, vol. 78, pp. 399–434, 2009.
[3]  V. Kirkin, D. G. McEwan, I. Novak, and I. Dikic, “A role for ubiquitin in selective autophagy,” Molecular Cell, vol. 34, no. 3, pp. 259–269, 2009.
[4]  C. Raiborg and H. Stenmark, “The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins,” Nature, vol. 458, no. 7237, pp. 445–452, 2009.
[5]  H. D. Ulrich and H. Walden, “Ubiquitin signalling in DNA replication and repair,” Nature Reviews Molecular Cell Biology, vol. 11, no. 7, pp. 479–489, 2010.
[6]  K. Wickliffe, A. Williamson, L. Jin, and M. Rape, “The multiple layers of ubiquitin-dependent cell cycle control,” Chemical Reviews, vol. 109, no. 4, pp. 1537–1548, 2009.
[7]  J. M. Winget and T. Mayor, “The diversity of ubiquitin recognition: hot spots and varied specificity,” Molecular Cell, vol. 38, no. 5, pp. 627–635, 2010.
[8]  C. M. Pickart and D. Fushman, “Polyubiquitin chains: polymeric protein signals,” Current Opinion in Chemical Biology, vol. 8, no. 6, pp. 610–616, 2004.
[9]  D. Finley, “Recognition and processing of ubiquitin-protein conjugates by the proteasome,” Annual Review of Biochemistry, vol. 78, pp. 477–513, 2009.
[10]  D. Finley, A. Ciechanover, and A. Varshavsky, “Ubiquitin as a central cellular regulator,” Cell, vol. 116, supplement 2, pp. S29–S32, 2004.
[11]  I. Dikic, S. Wakatsuki, and K. J. Walters, “Ubiquitin-binding domains from structures to functions,” Nature Reviews Molecular Cell Biology, vol. 10, no. 10, pp. 659–671, 2009.
[12]  A. Bremm, S. M. V. Freund, and D. Komander, “Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne,” Nature Structural and Molecular Biology, vol. 17, no. 8, pp. 939–947, 2010.
[13]  F. Ikeda and I. Dikic, “Atypical ubiquitin chains: new molecular signals. “Protein modifications: beyond the usual suspects” review series,” EMBO Reports, vol. 9, no. 6, pp. 536–542, 2008.
[14]  K. Iwai and F. Tokunaga, “Linear polyubiquitination: a new regulator of NF-κB activation,” EMBO Reports, vol. 10, no. 7, pp. 706–713, 2009.
[15]  M. L. Matsumoto, K. E. Wickliffe, K. C. Dong et al., “K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody,” Molecular Cell, vol. 39, no. 3, pp. 477–484, 2010.
[16]  H. Richly, M. Rape, S. Braun, S. Rumpf, C. Hoege, and S. Jentsch, “A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting,” Cell, vol. 120, no. 1, pp. 73–84, 2005.
[17]  K. G. Sim, Z. Zang, C. M. Yang, J. V. Bonventre, and S. I.-H. Hsu, “TRIP-Br links E2F to novel functions in the regulation of cyclin E expression during cell cycle progression and in the maintenance of genomic stability,” Cell Cycle, vol. 3, no. 10, pp. 1296–1304, 2004.
[18]  K. G. Sim, J. K. Cheong, and S. I.-H. Hsu, “The TRIP-Br family of transcriptional regulators is essential for the execution of cyclin E-mediated cell cycle progression,” Cell Cycle, vol. 5, no. 10, pp. 1111–1115, 2006.
[19]  Z. Zang, L. Gunaratnam, J. K. Cheong et al., “Identification of PP2A as a novel interactor and regulator of TRIP-Br1,” Cellular Signalling, vol. 21, no. 1, pp. 34–42, 2009.
[20]  J. K. Cheong, L. Gunaratnam, and S. I.-H. Hsu, “CRM1-mediated nuclear export is required for 26 S proteasome-dependent degradation of the TRIP-Br2 proto-oncoprotein,” The Journal of Biological Chemistry, vol. 283, no. 17, pp. 11661–11676, 2008.
[21]  D. Thomas and M. Tyers, “Transcriptional regulation: kamikaze activators,” Current Biology, vol. 10, no. 9, pp. R341–R343, 2000.
[22]  S. E. Salghetti, A. A. Caudy, J. G. Chenoweth, and W. P. Tansey, “Regulation of transcriptional activation domain function by ubiquitin,” Science, vol. 293, no. 5535, pp. 1651–1653, 2001.
[23]  P. Kaiser, K. Flick, C. Wittenberg, and S. I. Reed, “Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4,” Cell, vol. 102, no. 3, pp. 303–314, 2000.
[24]  K. Flick, I. Ouni, J. A. Wohlschlegel et al., “Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain,” Nature Cell Biology, vol. 6, no. 7, pp. 634–641, 2004.
[25]  K. Flick, S. Raasi, H. Zhang, J. L. Yen, and P. Kaiser, “A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome,” Nature Cell Biology, vol. 8, no. 5, pp. 509–515, 2006.
[26]  D. Grabs, V. I. Slepnev, Z. Songyang et al., “The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence,” The Journal of Biological Chemistry, vol. 272, no. 20, pp. 13419–13425, 1997.
[27]  J. M. Seeling, J. R. Miller, R. Gil, R. T. Moon, R. White, and D. M. Virshup, “Regulation of β-catenin signaling by the B56 subunit of protein phosphatase 2A,” Science, vol. 283, no. 5410, pp. 2089–2091, 1999.
[28]  S. D. Stamenova, M. E. French, Y. He, S. A. Francis, Z. B. Kramer, and L. Hicke, “Ubiquitin binds to and regulates a subset of SH3 domains,” Molecular Cell, vol. 25, no. 2, pp. 273–284, 2007.
[29]  S. C. Shih, G. Prag, S. A. Francis, M. A. Sutanto, J. H. Hurley, and L. Hicke, “A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain,” The EMBO Journal, vol. 22, no. 6, pp. 1273–1281, 2003.
[30]  S. I. Hsu, C. M. Yang, K. G. Sim, D. M. Hentschel, E. O'leary, and J. V. Bonventre, “TRIP-Br: a novel family of PHD zinc finger- and bromodomain-interacting proteins that regulate the transcriptional activity of E2F-1/DP-1,” The EMBO Journal, vol. 20, no. 9, pp. 2273–2285, 2001.
[31]  J. K. Cheong, L. Gunaratnam, Z. J. Zang et al., “TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors,” Journal of Translational Medicine, vol. 7, article 8, 2009.
[32]  C. W. Liew, J. Boucher, J. K. Cheong, et al., “Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance,” Nature Medicine, vol. 19, no. 2, pp. 217–226, 2013.
[33]  J. Z. Zhi, G. S. Khe, K. C. Jit, C. M. Yang, S. Y. Chui, and S. I.-H. Hsu, “Exploiting the TRIP-Br family of cell cycle regulatory proteins as chemotherapeutic drug targets in human cancer,” Cancer Biology and Therapy, vol. 6, no. 5, pp. 712–718, 2007.
[34]  J. J. Sims and R. E. Cohen, “Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80,” Molecular Cell, vol. 33, no. 6, pp. 775–783, 2009.
[35]  N. Zhang, Q. Wang, A. Ehlinger et al., “Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13,” Molecular Cell, vol. 35, no. 3, pp. 280–290, 2009.
[36]  L. Jin, A. Williamson, S. Banerjee, I. Philipp, and M. Rape, “Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex,” Cell, vol. 133, no. 4, pp. 653–665, 2008.
[37]  D. S. Kirkpatrick, N. A. Hathaway, J. Hanna et al., “Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology,” Nature Cell Biology, vol. 8, no. 7, pp. 700–710, 2006.
[38]  T. Ito, H. Ando, T. Suzuki et al., “Identification of a primary target of thalidomide teratogenicity,” Science, vol. 327, no. 5971, pp. 1345–1350, 2010.
[39]  C. J. Brown, C. F. Cheok, C. S. Verma, and D. P. Lane, “Reactivation of p53: from peptides to small molecules,” Trends in Pharmacological Sciences, vol. 32, no. 1, pp. 53–62, 2011.
[40]  C. F. Cheok, C. S. Verma, J. Baselga, et al., “Translating p53 into the clinic,” Nature Reviews Clinical Oncology, vol. 8, no. 1, pp. 25–37, 2011.
[41]  A. Di Cintio, E. Di Gennaro, and A. Budillon, “Restoring p53 function in cancer: novel therapeutic approaches for applying the brakes to tumorigenesis,” Recent Patents on Anti-Cancer Drug Discovery, vol. 5, no. 1, pp. 1–13, 2010.
[42]  A. Mandinova and S. W. Lee, “The p53 pathway as a target in cancer therapeutics: obstacles and promise,” Science Translational Medicine, vol. 3, no. 64, Article ID 64rv1, 2011.
[43]  M. D. Petroski, “The ubiquitin system, disease, and drug discovery,” BMC Biochemistry, vol. 9, supplement 1, article S7, 2008.
[44]  B. T. Vu and L. Vassilev, “Small-molecule inhibitors of the p53-MDM2 interaction,” Current Topics in Microbiology and Immunology, vol. 348, pp. 151–172, 2011.
[45]  F. Colland, E. Formstecher, X. Jacq et al., “Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells,” Molecular Cancer Therapeutics, vol. 8, no. 8, pp. 2286–2295, 2009.
[46]  B. Nicholson, J. G. Marblestone, T. R. Butt, and M. R. Mattern, “Deubiquitinating enzymes as novel anticancer targets,” Future Oncology, vol. 3, no. 2, pp. 191–199, 2007.
[47]  R. Nusse and H. E. Varmus, “Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome,” Cell, vol. 31, no. 1, pp. 99–109, 1982.
[48]  H. Clevers and R. Nusse, “Wnt/beta-catenin signaling and disease,” Cell, vol. 149, no. 6, pp. 1192–1205, 2012.
[49]  R. Nusse and H. Varmus, “Three decades of Wnts: a personal perspective on how a scientific field developed,” The EMBO Journal, vol. 31, no. 12, pp. 2670–2684, 2012.
[50]  Z. Gao, J. M. Seeling, V. Hill, A. Yochum, and D. M. Virshup, “Casein kinase I phosphorylates and destabilizes the β-catenin degradation complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1182–1187, 2002.
[51]  V. Korinek, N. Barker, P. J. Morin et al., “Constitutive transcriptional activation by a β-catenin-Tcf complex in APC(-/-) colon carcinoma,” Science, vol. 275, no. 5307, pp. 1784–1787, 1997.
[52]  P. J. Morin, A. B. Sparks, V. Korinek et al., “Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC,” Science, vol. 275, no. 5307, pp. 1787–1790, 1997.
[53]  B. Rubinfeld, I. Albert, E. Porfiri, C. Fiol, S. Munemitsu, and P. Polakis, “Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly,” Science, vol. 272, no. 5264, pp. 1023–1026, 1996.
[54]  B. Rubinfeld, B. Souza, I. Albert et al., “Association of the APC gene product with β-catenin,” Science, vol. 262, no. 5140, pp. 1731–1734, 1993.
[55]  A. R. Hernandez, A. M. Klein, and M. W. Kirschner, “Kinetic responses of beta-catenin specify the sites of Wnt control,” Science, vol. 338, no. 6112, pp. 1337–1340, 2012.
[56]  H. Tran and P. Polakis, “Reversible modification of adenomatous polyposis coli (APC) with K63-linked polyubiquitin regulates the assembly and activity of the beta-catenin destruction complex,” The Journal of Biological Chemistry, vol. 287, no. 34, pp. 28552–28563, 2012.
[57]  S. A. Huang, Y. M. Mishina, S. Liu et al., “Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling,” Nature, vol. 461, no. 7264, pp. 614–620, 2009.
[58]  T. T. H. Lui, C. Lacroix, S. M. Ahmed et al., “The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling,” Molecular and Cellular Biology, vol. 31, no. 10, pp. 2053–2065, 2011.
[59]  H. X. Hao, Y. Xie, Y. Zhang, et al., “ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner,” Nature, vol. 485, no. 7397, pp. 195–200, 2012.
[60]  V. Chitalia, S. Shivanna, J. Martorell, et al., “c-Cbl, a ubiquitin E3 ligase that targets active beta-catenin—a novel layer of Wnt regulation,” The Journal of Biological Chemistry, 2013.
[61]  J. N. Dynek, S. M. Chan, J. Liu, J. Zha, W. J. Fairbrother, and D. Vucic, “Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas,” Cancer Research, vol. 68, no. 9, pp. 3124–3132, 2008.
[62]  A. M. Hunter, E. C. LaCasse, and R. G. Korneluk, “The inhibitors of apoptosis (IAPs) as cancer targets,” Apoptosis, vol. 12, no. 9, pp. 1543–1568, 2007.
[63]  J. Dierlamm, M. Baens, I. Wlodarska et al., “The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa- associated lymphoid tissue lymphomas,” Blood, vol. 93, no. 11, pp. 3601–3609, 1999.
[64]  I. Imoto, H. Tsuda, A. Hirasawa et al., “Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy,” Cancer Research, vol. 62, no. 17, pp. 4860–4866, 2002.
[65]  P. G. Isaacson, “Update on MALT lymphomas,” Best Practice and Research: Clinical Haematology, vol. 18, no. 1, pp. 57–68, 2005.
[66]  H. Zhou, M. Du, and V. M. Dixit, “Constitutive NF-κB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity,” Cancer Cell, vol. 7, no. 5, pp. 425–431, 2005.
[67]  H. Sun, Z. Nikolovska-Coleska, J. Lu et al., “Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP,” Journal of the American Chemical Society, vol. 129, no. 49, pp. 15279–15294, 2007.
[68]  C. Ndubaku, F. Cohen, E. Varfolomeev, and D. Vucic, “Targeting inhibitor of apoptosis proteins for therapeutic intervention,” Future Medicinal Chemistry, vol. 1, no. 8, pp. 1509–1525, 2009.
[69]  E. Varfolomeev, J. W. Blankenship, S. M. Wayson et al., “IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis,” Cell, vol. 131, no. 4, pp. 669–681, 2007.
[70]  M. J. M. Bertrand, S. Milutinovic, K. M. Dickson et al., “cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination,” Molecular Cell, vol. 30, no. 6, pp. 689–700, 2008.
[71]  J. E. Vince, W. W. Wong, N. Khan et al., “IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis,” Cell, vol. 131, no. 4, pp. 682–693, 2007.
[72]  S. L. Petersen, L. Wang, A. Yalcin-Chin et al., “Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis,” Cancer Cell, vol. 12, no. 5, pp. 445–456, 2007.
[73]  R. D. Meyer, C. Latz, and N. Rahimi, “Recruitment and activation of phospholipase Cγ1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells,” The Journal of Biological Chemistry, vol. 278, no. 18, pp. 16347–16355, 2003.
[74]  A. J. Singh, R. D. Meyer, H. Band, and N. Rahimi, “The carboxyl terminus of VEGFR-2 is required for PKC-mediated down-regulation,” Molecular Biology of the Cell, vol. 16, no. 4, pp. 2106–2118, 2005.
[75]  A. J. Singh, R. D. Meyer, G. Navruzbekov, et al., “A critical role for the E3-ligase activity of c-Cbl in VEGFR-2-mediated PLCgamma1 activation and angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 13, pp. 5413–5418, 2007.
[76]  H. Liao, T. Kume, C. McKay, M. Xu, J. N. Ihle, and G. Carpenter, “Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice,” The Journal of Biological Chemistry, vol. 277, no. 11, pp. 9335–9341, 2002.
[77]  R. D. Meyer, D. Husain, and N. Rahimi, “c-Cbl inhibits angiogenesis and tumor growth by suppressing activation of PLCγ1,” Oncogene, vol. 30, no. 19, pp. 2198–2206, 2011.
[78]  D. R. Bosu and E. T. Kipreos, “Cullin-RING ubiquitin ligases: global regulation and activation cycles,” Cell Division, vol. 3, article 7, 2008.
[79]  M. D. Petroski and R. J. Deshaies, “Function and regulation of cullin-RING ubiquitin ligases,” Nature Reviews Molecular Cell Biology, vol. 6, no. 1, pp. 9–20, 2005.
[80]  R. N. Bohnsack and A. L. Haas, “Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer,” The Journal of Biological Chemistry, vol. 278, no. 29, pp. 26823–26830, 2003.
[81]  B. A. Schulman and J. Wade Harper, “Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways,” Nature Reviews Molecular Cell Biology, vol. 10, no. 5, pp. 319–331, 2009.
[82]  L. Gong and E. T. H. Yeh, “Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway,” The Journal of Biological Chemistry, vol. 274, no. 17, pp. 12036–12042, 1999.
[83]  F. Osaka, H. Kawasaki, N. Aida et al., “A new NEDD8-ligating system for cullin-4A,” Genes and Development, vol. 12, no. 15, pp. 2263–2268, 1998.
[84]  D. M. Duda, L. A. Borg, D. C. Scott, H. W. Hunt, M. Hammel, and B. A. Schulman, “Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation,” Cell, vol. 134, no. 6, pp. 995–1006, 2008.
[85]  F. Osaka, M. Saeki, S. Katayama et al., “Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast,” The EMBO Journal, vol. 19, no. 13, pp. 3475–3484, 2000.
[86]  T. A. Soucy, P. G. Smith, M. A. Milhollen et al., “An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer,” Nature, vol. 458, no. 7239, pp. 732–736, 2009.
[87]  J. I. Toth, L. Yang, R. Dahl, et al., “A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924,” Cell Reports, vol. 1, no. 4, pp. 309–316, 2012.
[88]  S. Grimm, A. H?hn, and T. Grune, “Oxidative protein damage and the proteasome,” Amino Acids, vol. 42, no. 1, pp. 23–38, 2012.
[89]  D. J. McConkey and K. Zhu, “Mechanisms of proteasome inhibitor action and resistance in cancer,” Drug Resistance Updates, vol. 11, no. 4-5, pp. 164–179, 2008.
[90]  A. G. Eldridge and T. O'Brien, “Therapeutic strategies within the ubiquitin proteasome system,” Cell Death and Differentiation, vol. 17, no. 1, pp. 4–13, 2010.
[91]  B. Lee, M. J. Lee, S. Park et al., “Enhancement of proteasome activity by a small-molecule inhibitor of USP14,” Nature, vol. 467, no. 7312, pp. 179–184, 2010.
[92]  S. J. Brown, T. F. Chou, R. Deshaies, et al., “Probe report for P97/cdc48 inhibitors,” in Probe Reports from the NIH Molecular Libraries Program, National Center for Biotechnology Information, Bethesda, Md, USA, 2010.
[93]  T. Chou, S. J. Brown, D. Minond et al., “Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 4834–4839, 2011.
[94]  Q. Chen, J. Liu, K. M. Horak et al., “Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake,” Circulation Research, vol. 97, no. 10, pp. 1018–1026, 2005.
[95]  J. Liu, M. Tang, R. Mestril, and X. Wang, “Aberrant protein aggregation is essential for a mutant desmin to impair the proteolytic function of the ubiquitin-proteasome system in cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 40, no. 4, pp. 451–454, 2006.
[96]  P. Tannous, H. Zhu, A. Nemchenko et al., “Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy,” Circulation, vol. 117, no. 24, pp. 3070–3078, 2008.
[97]  A. Sanbe, H. Osinska, C. Villa et al., “Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13592–13597, 2005.
[98]  K. M. Sakamoto, K. B. Kim, A. Kumagai, F. Mercurio, C. M. Crews, and R. J. Deshaies, “Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 15, pp. 8554–8559, 2001.
[99]  K. M. Sakamoto, “Protacs for treatment of cancer,” Pediatric Research, vol. 67, no. 5, pp. 505–508, 2010.
[100]  J. S. Schneekloth Jr., F. N. Fonseca, M. Koldobskiy et al., “Chemical genetic control of protein levels: selective in vivo targeted degradation,” Journal of the American Chemical Society, vol. 126, no. 12, pp. 3748–3754, 2004.
[101]  D. Zhang, S. H. Baek, A. Ho, and K. Kim, “Degradation of target protein in living cells by small-molecule proteolysis inducer,” Bioorganic & Medicinal Chemistry Letters, vol. 14, no. 3, pp. 645–648, 2004.
[102]  D. Zhang, S.-H. Baek, A. Ho, H. Lee, Y. S. Jeong, and K. Kim, “Targeted degradation of proteins by small molecules: a novel tool for functional proteomics,” Combinatorial Chemistry and High Throughput Screening, vol. 7, no. 7, pp. 689–697, 2004.
[103]  A. Rodriguez-Gonzalez, K. Cyrus, M. Salcius et al., “Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer,” Oncogene, vol. 27, no. 57, pp. 7201–7211, 2008.
[104]  K. Cyrus, M. Wehenkel, E. Choi et al., “Impact of linker length on the activity of PROTACs,” Molecular BioSystems, vol. 7, no. 2, pp. 359–364, 2011.
[105]  K. Cyrus, M. Wehenkel, E. Choi, H. Lee, H. Swanson, and K. Kim, “Jostling for position: optimizing linker location in the design of estrogen receptor-targeting PROTACs,” ChemMedChem, vol. 5, no. 7, pp. 979–985, 2010.
[106]  K. Cyrus, M. Wehenkel, E. Choi, H. Swanson, and K. Kim, “Two-headed PROTAC: an effective new tool for targeted protein degradation,” ChemBioChem, vol. 11, no. 11, pp. 1531–1534, 2010.
[107]  K. M. Sakamoto, “Chimeric molecules to target proteins for ubiquitination and degradation,” Methods in Enzymology, vol. 399, article no. 54, pp. 833–847, 2005.
[108]  K. M. Sakamoto, K. B. Kim, R. Verma et al., “Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation,” Molecular & Cellular Proteomics, vol. 2, no. 12, pp. 1350–1358, 2003.
[109]  H. Lee, D. Puppala, E. Choi, H. Swanson, and K. Kim, “Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool,” ChemBioChem, vol. 8, no. 17, pp. 2058–2062, 2007.
[110]  D. Puppala, H. Lee, B. K. Kyung, and H. I. Swanson, “Development of an aryl hydrocarbon receptor antagonist using the proteolysis-targeting chimeric molecules approach: a potential tool for chemoprevention,” Molecular Pharmacology, vol. 73, no. 4, pp. 1064–1071, 2008.
[111]  Y. Itoh, M. Ishikawa, M. Naito, and Y. Hashimoto, “Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins,” Journal of the American Chemical Society, vol. 132, no. 16, pp. 5820–5826, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133