全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epidemiological Study of the Incidence of Cancers Eligible for Proton or Carbon Ions Therapy: Methodology and Results of Recruitment Estimation

DOI: 10.1155/2013/107646

Full-Text   Cite this paper   Add to My Lib

Abstract:

Context. Hadrontherapy is an innovative form of radiotherapy using beams of protons or carbon ions able to destroy some radio-resistant tumours. Because these tumours are highly specific amongst all cancerous tumours, it is impossible to determine the incidence of these diseases from surveillance registries. Goal. To assess, within the Rh?ne-Alpes region, the incidence of cancers being hadrontherapy indications. Method. Prospective, multicentre continuous data collection during 1 year, by practitioners participating to multidisciplinary tumor board. Tumours are inoperable, radio resistant, at primary stage of development, or locally recurrent, with low metastatic potential. Results. Study involved 27 healthcare centres, 52 groups of specialist practitioners. The estimated incidence of cancers eligible for hadrontherapy in the Rh?ne-Alpes region in 2010, that is, for 34 locations in all, is of 8.5/100?000 inhabitants. Appraisal of the low potential of metastatic progression is impeded, because these are rare diseases, whose outcome is unfamiliar to investigators. Conclusion. Future epidemiological studies will need to focus on prognosis and on the metastatic progression rate of these diseases. Indeed, there are few information available on this subject in the literature that could be used to improve preventive measures, medical care, and the surveillance of these rare cancers. 1. Scientific Context 1.1. Hadrontherapy Hadrontherapy is an innovative form of radiotherapy, based on high-technology equipment using proton or carbon ions beams to destroy tumours [1, 2]. This treatment method enables significantly higher ballistic precision to be achieved, compared to photons (X-rays) with, as expected therapeutic benefit, an improvement of quality of life and chances of recovery [3]. Carbon ions are also specifically characterised by superior biological efficacy (relative biological effectiveness from 1.5 to 3), overcoming the radiation resistance of certain cancers to photons and even protons. Indeed, carbon ion beams when compared to X-rays represent a distinct advantage for the treatment of highly radiation-resistant tumours [4]. 1.2. Hadrontherapy Epidemiological Studies An initial study assessing recruitment potential for proton therapy was conducted in 1998 in Italy, showing an incidence of 10?825 cases/year [5]. One year later, a second study was carried out in the context of the MedAustron project for the construction of a carbon ions therapy centre in Austria. Considering patients living in Austria and neighbouring countries, the patient recruitment

References

[1]  H. Suit, “The gray lecture 2001: coming technical advances in radiation oncology,” International Journal of Radiation Oncology Biology Physics, vol. 53, no. 4, pp. 798–809, 2002.
[2]  H. Suit, S. Goldberg, A. Niemierko et al., “Proton beams to replace photon beams in radical dose treatments,” Acta Oncologica, vol. 42, no. 8, pp. 800–808, 2003.
[3]  R. Orecchia, M. Krengli, B. A. Jereczek-Fossa, S. Franzetti, and J. P. Gerard, “Clinical and research validity of hadrontherapy with ion beams,” Critical Reviews in Oncology/Hematology, vol. 51, no. 2, pp. 81–90, 2004.
[4]  K. Ando and Y. Kase, “Biological characteristics of carbon-ion therapy,” International Journal of Radiation Biology, vol. 85, no. 9, pp. 715–728, 2009.
[5]  R. Orecchia and M. Krengli, “Number of potential patients to be treated with proton therapy in Italy,” Tumori, vol. 84, no. 2, pp. 205–208, 1998.
[6]  H. Engels and A. Wambersie, “Cancer epidemiology and patient recruitment for hadrontherapy,” Strahlentherapie und Onkologie, vol. 175, no. 2, supplement, pp. 95–99, 1999.
[7]  M. H. Baron, P. Pommier, V. Favrel, G. Truc, J. Balosso, and J. Rochat, “A “one-day survey”: as a reliable estimation of the potential recruitment for proton- and carbon-ion therapy in France,” Radiotherapy and Oncology, vol. 73, supplement 2, pp. S15–S16, 2004.
[8]  R. Mayer, U. Mock, R. J?ger et al., “Epidemiological aspects of hadron therapy: a prospective nationwide study of the Austrian project MedAustron and the Austrian Society of Radiooncology (OEGRO),” Radiotherapy and Oncology, vol. 73, supplement 2, pp. S24–S28, 2004.
[9]  M. Krengli and R. Orecchia, “Medical aspects of the national centre for oncological hadrontherapy (CNAO—Centro Nazionale Adroterapia Oncologica) in Italy,” Radiotherapy and Oncology, vol. 73, supplement 2, pp. S21–S23, 2004.
[10]  T. Kamada, “Overview of the carbon ion radiotherapy at HIMAC,” in Proceedings of NIRS-ETOILE 2nd Joint Symposium on Carbon Ion Radiotherapy, pp. 46–53, November 2011.
[11]  International Classification of Rare Cancers, http://www.rarecare.eu/rare_indicators/WP5_Technical_Report.pdf.
[12]  “ORPHANET Cahiers 2011: prevalence of rare diseases,” http://www.orpha.net.
[13]  H. Tsujii, J. Mizoe, T. Kamada et al., “Overview of clinical experiences on carbon ion radiotherapy at NIRS,” Radiotherapy and Oncology, vol. 73, supplement 2, pp. S41–S49, 2004.
[14]  “Estimated population by region, gender and high age—years 1990–2010,” http://www.insee.fr.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133