全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phenology of Some Phanerogams (Trees and Shrubs) of Northwestern Punjab, India

DOI: 10.1155/2013/712405

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plants perform various vegetative and reproductive functions throughout the year in order to persist in their habitats. The study of these events including their timing and how the environment influences the timing of these events is known as phenology. This study of the timing of seasonal biological activities of plants is very important to know about plant’s survival and its reproductive success. The variation in the phenological activities is due to change in different abiotic conditions. This paper deals with the study of phenological activities like bud formation, flowering time, fruiting time, and seed formation for some leguminous plants of Amritsar, Punjab (a state in the northwest of India) for three consecutive years from 2009 till 2011. 1. Introduction The timing of various phenological activities such as germination, bud break, flowering, fruit dehiscence, and leaf drop is important for survival and reproductive success of many plant species. Abiotic environmental conditions such as rain, change in temperature, presence/absence of pollinators, competitors, and herbivores have been shown to play a significant role in timing of various phenological events [1–6]. Natural selection has also been considered to play some role in determining the phenological patterns of plant species [7]. Phenological studies are also important in understanding species interrelations and their interaction with the environment. Variations in phenophases among individuals of the same species or different species have been linked to environmental perturbations [8]. Considerable amount of phenological data is available on different plant species from different parts of the world including tropical savanna and semideciduous forest of Venezuelan Ilanos (South America) [9], dry tropical forest in Ghana [10], NE Spain [11–13], Panama [14], Mexico [15], tropical rain forest in Malaya [16], semiarid grassland in the Rock mountain, USA [17], and tibetan plateau [18]. A number of studies on phenology of different plant species from different parts of India have also been undertaken which include those from a subtropical humid forest in North-Eastern India [19, 20], Kumaun Himalayan forests [21, 22], deciduous forest of Bandipur in peninsular India [23], Shervaroys, Southern India [24], tropical moist forest of Western Ghats in Karnataka [25], Hathinala Forest in Uttar Pradesh [26], alpine expanse of North-West Himalaya [27], Orissa coast [28], tropical montane forests in the Nilgiris [8], Kolhapur region (Maharashtra) [29], and Katerniaghat wildlife sanctuary situated in the

References

[1]  E. R. Heithaus, “The role of plant-pollinator interactions in determining community structure,” Annals of the Missouri Botanical Garden, vol. 61, pp. 675–691, 1974.
[2]  G. W. Frankie, “Tropical forest phenology and pollinator plant coevolution,” in Coevolution of Animals and Plants, L. E. Gilbert and P. H. Raven, Eds., pp. 192–209, University of Texas Press, Austin, Tex, USA, 1975.
[3]  H. R. Pulliam and M. R. Brand, “The production and utilization of seeds in plains grassland of southeastern Arizona,” Ecology, vol. 56, pp. 1158–1166, 1975.
[4]  P. A. Opler, G. W. Frankie, and H. G. Baker, “Rainfall as a factor in the release, timing and synchronization of anthesis by tropical trees and shrubs,” Journal of Biogeography, vol. 3, pp. 231–236, 1976.
[5]  J. N. Thompson and M. F. Willson, “Evolution of temperature fruit/bird interactions: phenological strategies,” Evolution, vol. 33, pp. 973–982, 1979.
[6]  E. W. Stiles, “Patterns of fruit presentation and seed dispersal in bird disseminated woody plants in the eastern deciduous forest,” The American Naturalist, vol. 116, pp. 670–688, 1980.
[7]  G. F. Estabrook, J. A. Winsor, A. G. Stephenson, and H. F. Howe, “When are two phenological patterns different?” Botanical Gazette, vol. 143, no. 3, pp. 374–378, 1982.
[8]  H. S. Suresh and R. Sukumar, “Vegetative phenology of tropical montane forests in the Nilgiris, South India,” Journal of the National Science Foundation of Sri Lanka, vol. 39, no. 4, pp. 333–343, 2011.
[9]  M. Monasterio and G. Sarmiento, “Phenological strategies of plant species in the tropical savanna and the semideciduous forest of the Venezuelan Ilanos,” Journal of Biogeography, vol. 3, pp. 352–356, 1976.
[10]  D. Lieberman, “Seasonality and phenology in a dry tropical forest in Ghana,” Journal of Ecology, vol. 70, no. 3, pp. 791–806, 1982.
[11]  R. Milla, P. Castro-Díez, and G. Montserrat-Martí, “Phenology of Mediterranean woody plants from NE Spain: synchrony, seasonality, and relationships among phenophases,” Flora, vol. 205, no. 3, pp. 190–199, 2010.
[12]  C.-D. Pilar and M.-M. Gabriel, “Phenological pattern of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain,” Plant Ecology, vol. 139, no. 1, pp. 103–112, 1998.
[13]  G. Montserrat-Martí and C. Pérez-Rontomé, “Fruit growth dynamics and their effects on the phenological pattern of native Pistacia populations in NE Spain,” Flora, vol. 197, no. 3, pp. 161–174, 2002.
[14]  D. De Steven, D. M. Windsor, and F. E. Putz, “Vegetative and reproductive phonologies of a palm assemblage in Panama,” Biotropica, vol. 19, pp. 342–356, 1987.
[15]  S. H. Bullock and J. A. Solis-Magallanes, “Phenology of canopy trees of a tropical deciduous forest in Mexico,” Biotropica, vol. 22, pp. 22–35, 1990.
[16]  L. Medway, “Phenology of a tropical rain forest in Malaya,” Biological Journal of the Linnean Society, vol. 4, no. 2, pp. 117–146, 1972.
[17]  P. Lesica and P. M. Kittelson, “Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland,” Journal of Arid Environments, vol. 74, pp. 1013–1017, 2010.
[18]  M. Shen, Y. Tang, J. Chen, X. Zhu, and Y. Zheng, “Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau,” Agricultural and Forest Meteorology, vol. 151, no. 12, pp. 1711–1722, 2011.
[19]  R. P. Shukla and P. S. Ramakrishnan, “Phenology of trees in a sub-tropical humid forest in north-eastern India,” Vegetatio, vol. 49, no. 2, pp. 103–109, 1982.
[20]  R. P. Shukla and P. S. Ramakrishnan, “Leaf dynamics of tropical trees related to successional status,” New Phytologist, vol. 97, no. 4, pp. 697–706, 1984.
[21]  P. K. Ralhan, R. K. Khanna, S. P. Singh, and J. S. Singh, “Phenological characteristics of the tree layer of Kumaun Himalayan forests,” Vegetatio, vol. 60, no. 2, pp. 91–101, 1985.
[22]  Y. P. S. Pangtey, R. S. Rawal, N. S. Bankoti, and S. S. Samant, “Phenology of high-altitude plants of Kumaun in Central Himalaya, India,” International Journal of Biometeorology, vol. 34, no. 2, pp. 122–127, 1990.
[23]  S. N. Prasad and M. Hegde, “Phenology and seasonality in the tropical deciduous forest of Bandipur, South India,” Proceedings: Plant Sciences, vol. 96, no. 2, pp. 121–133, 1986.
[24]  N. Sivaraj and K. V. Krishnamurthy, “Flowering phenology in the vegetation of Shervaroys, South India,” Vegetatio, vol. 79, no. 1-2, pp. 85–88, 1988.
[25]  D. M. Bhat and K. S. Murali, “Phenology of understorey species of tropical moist forest of Western Ghats region of Uttara Kannada district in South India,” Current Science, vol. 81, no. 7, pp. 799–805, 2001.
[26]  K. P. Singh and C. P. Kushwaha, “Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India,” Annals of Botany, vol. 97, no. 2, pp. 265–276, 2006.
[27]  R. K. Vashisthe, N. Rawat, A. K. Chaturvedi, B. P. Nautiyal, P. Prasad, and M. C. Nautiyal, “An exploration on the phenology of different growth forms of an alpine expanse of north-west Himalaya, India,” New York Science Journal, vol. 2, pp. 29–42, 2009.
[28]  V. P. Upadhyay and P. K. Mishra, “Phenology of mangroves tree species on Orissa coast, India,” Tropical Ecology, vol. 51, no. 2, pp. 289–295, 2010.
[29]  A. R. Kasarkar and D. K. Kulkarni, “Phenological studies of family zingiberaceae with special reference to Alpinia and Zingiber from Kolhapur region(MS) India,” Bioscience Discovery, vol. 2, pp. 322–327, 2011.
[30]  O. Bajpai, A. Kumar, A. K. Mishra, N. Sahu, S. K. Behera, and L. B. Chaudhary, “Phenological study of two dominant tree species in tropical moist deciduous forest from the Northern India,” International Journal of Botany, vol. 8, pp. 66–72, 2012.
[31]  A. Lokho and Y. Kumar, “Reproductive phenology and morphology analysis of Indian Dendrobium Sw. (Orchidaceae) from the northeast region,” International Journal of Scientific and Research Publications, vol. 2, pp. 1–14, 2012.
[32]  S. H. G. Champion and S. K. Seth, A Revised Survey of the Forest Types of India, The manager of Publications, Delhi, India, 1968.
[33]  R. E. Sosebee and H. H. Wiebe, “Effect of phenological development on radiophosphorus translocation from leaves in crested wheatgrass,” Oecologia, vol. 13, no. 2, pp. 103–112, 1973.
[34]  F. G. Taylor Jr., Phenodynamics of Production in a Mesic Deciduous Forest. US/IBP Eastern Deciduous Forest Biome, Oak Ridges National Laboratory, Oak Ridge, Tenn, USA, 1972.
[35]  M. Y. Nuttonson, Wheat-Climate Relationships and the Use of Phenology in Ascertaining the Thermal and Photo-Thermal Requirements of Wheat; Based on Data of North America and Some Thermally Analogous Areas of North America, in the Soviet Union and in Finland, American Institute for Crop Ecology, Washington, DC, USA, 1955.
[36]  J. P. Blaisdell, “Seasonal development and yield of native plants on the upper Snake River plains and their relation to certain climatic factors,” US Department of Agriculture Technical Bulletin, vol. 1190, pp. 1–68, 1958.
[37]  J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina-Elizade, “Global temperature change,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14288–14293, 2006.
[38]  Y. Julien and J. A. Sobrino, “Global land surface phenology trends from GIMMS database,” International Journal of Remote Sensing, vol. 30, no. 13, pp. 3495–3513, 2009.
[39]  A. Menzel, T. H. Sparks, N. Estrella et al., “European phenological response to climate change matches the warming pattern,” Global Change Biology, vol. 12, no. 10, pp. 1969–1976, 2006.
[40]  C. Parmesan and G. Yohe, “A globally coherent fingerprint of climate change impacts across natural systems,” Nature, vol. 421, no. 6918, pp. 37–42, 2003.
[41]  S. Piao, J. Fang, L. Zhou, P. Ciais, and B. Zhu, “Variations in satellite-derived phenology in China's temperate vegetation,” Global Change Biology, vol. 12, no. 4, pp. 672–685, 2006.
[42]  J. Ollerton and A. J. Lack, “Flowering phenology: an example of relaxation of natural selection?” Trends in Ecology and Evolution, vol. 7, no. 8, pp. 274–276, 1992.
[43]  F. Saavedra, D. W. Inouye, M. V. Price, and J. Harte, “Changes in flowering and abundance of Delphinium nuttallianum (Ranunculaceae) in response to a subalpine climate warming experiment,” Global Change Biology, vol. 9, no. 6, pp. 885–894, 2003.
[44]  N. C. Stenseth and A. Mysterud, “Climate, changing phenology, and other life history traits: nonlinearity and match-mismatch to the environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13379–13381, 2002.
[45]  I. Ibá?ez, R. B. Primack, A. J. Miller-Rushing et al., “Forecasting phenology under global warming,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1555, pp. 3247–3260, 2010.
[46]  C. Parmesan, “Influences of species, latitudes and methodologies on estimates of phenological response to global warming,” Global Change Biology, vol. 13, no. 9, pp. 1860–1872, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133