全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Process Improvement by Eliminating Mixing of Whole Blood Units after an Overnight Hold Prior to Component Production Using the Buffy Coat Method

DOI: 10.1155/2013/154838

Full-Text   Cite this paper   Add to My Lib

Abstract:

The elimination of a thorough manual mixing of whole blood (WB) which takes place following the overnight hold, but before the first centrifugation step, during buffy coat component production at Canadian Blood Services (CBS) was investigated. WB was pooled after donation and split. Pairs of platelet, red blood cell (RBC), and plasma components were produced, with half using the standard method and half using a method in which the mixing step was eliminated. Quality assessments included yield, pH, CD62P expression and morphology for platelets, hemoglobin, hematocrit, hemolysis, and supernatant K+ for RBCs, and volume and factor VIII activity levels for plasma. All components, produced using either method, met CBS quality control criteria. There were no significant differences in platelet yield between components produced with and without mixing. A significant difference was seen for RBC hemolysis at expiry ( ), but for both groups, levels met quality control requirements. Noninferiority of components produced without mixing was confirmed for all parameters. Manual mixing is laborious and has a risk of repetitive strain for production staff and its significance is unclear. Elimination of this step will improve process efficiencies without compromising quality. 1. Introduction Whole blood (WB) collection and storage and processing conditions can have critical consequences not only for the immediate quality of the resulting components but also for their long-term quality during storage. At Canadian Blood Services (CBS), production of pooled platelet components (PCs) is a semiautomated process in which WB is held overnight and then separated by a hard centrifugation step into RBCs, plasma, and buffy coats (BCs), from which PCs are subsequently produced [1, 2]. CBS current practice includes a thorough, manual mixing of WB units following the overnight hold immediately prior to the first centrifugation step. In consultation with the bag vendors, this step was introduced during the implementation of semiautomated component production at CBS [1] and was thought to improve the separation of platelets from the other components in blood and hence results in a higher platelet yield. In contrast with other mixing steps, such as the proper mixing of WB with anticoagulant at donation [3, 4], there is no evidence regarding the benefits of mixing WB immediately prior to centrifugation. Mixing of WB units does not appear to have been investigated previously nor does it appear in most descriptions of component production methods found in the literature, yet desired

References

[1]  E. Levin, B. Culibrk, M. I. C. Gy?ngy?ssy-Issa et al., “Implementation of buffy coat platelet component production: comparison to platelet-rich plasma platelet production,” Transfusion, vol. 48, no. 11, pp. 2331–2337, 2008.
[2]  E. Semple, A. Bowes-Schmidt, Q. L. Yi, S. Shimla, and D. V. Devine, “Transfusion reactions: a comparative observational study of blood components produced before and after implementation of semiautomated production from whole blood,” Transfusion, vol. 52, no. 12, pp. 2683–2691, 2012.
[3]  P. F. Van Der Meer and R. N. Pietersz, “An evaluation of automated blood collection mixers,” Vox Sanguinis, vol. 91, no. 3, pp. 275–277, 2006.
[4]  M. A. Blajchman, J. Cid, and M. Lozano, Eds., Blood Component Preparation: From Benchtop to Bedside, AABB Press, Bethesda, Md, USA, 1st edition edition, 2010.
[5]  J. Cid, M. Claparols, A. Pinacho et al., “Comparison of blood component preparation methods from whole blood bags based on buffy coat extraction,” Transfusion and Apheresis Science, vol. 36, no. 3, pp. 243–247, 2007.
[6]  C. H. Mondéjar, S. Bonanad, M. A. Soler et al., “Quality analysis of blood components obtained by automated buffy-coat layer removal with a top and bottom system,” Haematologica, vol. 85, no. 4, pp. 390–395, 2000.
[7]  F. Q. Lu, W. Kang, Y. Peng, and W. M. Wang, “Characterization of blood components separated from donated whole blood after an overnight holding at room temperature with the buffy coat method,” Transfusion, vol. 51, no. 10, pp. 2199–2207, 2011.
[8]  S. Thomas, M. Beard, M. Garwood, M. Callaert, and R. Cardigan, “Platelet concentrates produced from whole blood using the Atreus processing system,” Vox Sanguinis, vol. 97, no. 2, pp. 93–101, 2009.
[9]  D. S. Palmer, P. Birch, J. O'Toole, D. Henderson, and V. Scalia, “Flow cytometric determination of residual white blood cell levels in preserved samples from leukoreduced blood products,” Transfusion, vol. 48, no. 1, pp. 118–128, 2008.
[10]  C. Jenkins, S. Ramirez-Arcos, M. Goldman, and D. V. Devine, “Bacterial contamination in platelets: incremental improvements drive down but do not eliminate risk,” Transfusion, vol. 51, no. 12, pp. 2555–2565, 2011.
[11]  E. Levin, C. Jenkins, B. Culibrk, M. I. Gyongyossy-Issa, K. Serrano, and D. V. Devine, “Development of a quality monitoring program for platelet components: a report of the first four years' experience at Canadian Blood Services,” Transfusion, vol. 52, no. 4, pp. 810–818, 2012.
[12]  T. J. Kunicki, M. Tuccelli, G. A. Becker, and R. H. Aster, “A study of variables affecting the quality of platelets stored at ‘room temperature’,” Transfusion, vol. 15, no. 5, pp. 414–421, 1975.
[13]  S. Holme, G. Moroff, and S. Murphy, “A multi-laboratory evaluation of in vitro platelet assays: the tests for extent of shape change and response to hypotonic shock,” Transfusion, vol. 38, no. 1, pp. 31–40, 1998.
[14]  J. P. Acker, I. Croteau, and Q. L. Yi, “An analysis of the bias in red blood cell hemolysis measurement using several analytical approaches,” Clinica Chimica Acta, vol. 413, no. 21-22, pp. 1746–1752, 2012.
[15]  W. P. Sheffield, V. Bhakta, C. Jenkins, and D. V. Devine, “Conversion to the buffy coat method and quality of frozen plasma derived from whole blood donations in Canada,” Transfusion, vol. 50, no. 5, pp. 1043–1049, 2010.
[16]  W. P. Sheffield, V. Bhakta, C. Mastronardi, S. Ramirez-Arcos, D. Howe, and C. Jenkins, “Changes in coagulation factor activity and content of di(2-ethylhexyl)phthalate in frozen plasma units during refrigerated storage for up to five days after thawing,” Transfusion, vol. 52, no. 3, pp. 493–502, 2012.
[17]  L. Van De Watering, “Red cell storage and prognosis,” Vox Sanguinis, vol. 100, no. 1, pp. 36–45, 2011.
[18]  L. Eriksson, G. Eriksson, and C. F. H?gman, “Storage of buffy coat preparations at 22°C in plastic containers with different gas permeability,” Vox Sanguinis, vol. 73, no. 2, pp. 74–80, 1997.
[19]  P. Burger, H. Korsten, A. J. Verhoeven, D. de Korte, and R. van Bruggen, “Collection and storage of red blood cells with anticoagulant and additive solution with a physiologic pH,” Transfusion, vol. 52, no. 6, pp. 1245–1252, 2012.
[20]  D. De Korte and H. A. Veldman, “Automated blood-mixing devices still fail to mix at low bleeding rates,” Vox Sanguinis, vol. 80, no. 1, pp. 34–39, 2002.
[21]  S. Thomas, “Ambient overnight hold of whole blood prior to the manufacture of blood components,” Transfusion Medicine, vol. 20, no. 6, pp. 361–368, 2010.
[22]  P. F. Van Der Meer, J. A. Cancelas, R. Cardigan et al., “Evaluation of overnight hold of whole blood at room temperature before component processing: effect of red blood cell (RBC) additive solutions on in vitro RBC measures,” Transfusion, vol. 51, supplement 1, pp. 15S–24S, 2011.
[23]  S. Holme and S. Murphy, “Quantitative measurements of platelet shape by light transmission studies; application to storage of platelets for transfusion,” Journal of Laboratory and Clinical Medicine, vol. 92, no. 1, pp. 53–64, 1978.
[24]  J. P. Acker, A. L. Hansen, S. Payant, and C. DiFranco, “Evaluation of percent hemolysis measurement methods for use in the Canadian Blood Services quality control program,” Vox Sanguinis, vol. 99, supplement 1, p. 212, 2010.
[25]  V. Han, K. Serrano, and D. V. Devine, “A comparative study of common techniques used to measure haemolysis in stored red cell concentrates,” Vox Sanguinis, vol. 98, no. 2, pp. 116–123, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133