全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Trace Elemental Analysis in Cancerous and Noncancerous Human Tissues Using PIXE

DOI: 10.1155/2013/192026

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effect of high or low levels of trace metals in human tissues has been studied widely. There have been detectable significant variations in the concentrations of trace metals in normal and cancerous tissues suggesting that these variations could be a causative factor to various cancers. Even though essential trace metals play an important role such as stabilizers, enzyme cofactors, elements of structure, and essential elements for normal hormonal functions, their imbalanced toxic effects contribute to the rate of the reactive oxygen species (ROS) and formation of complexities in the body cells which may lead to DNA damage. The induction of oxidative-induced DNA damage by ROS may lead to isolated base lesions or single-strand breaks, complex lesions like double-strand breaks, and some oxidative generated clustered DNA lesions (OCDLs) which are linked to cell apoptosis and mutagenesis. The difference in published works on the level of variations of trace metals in different cancer tissues can be attributed to the accuracy of the analytical techniques, sample preparation methods, and inability of taking uniform samples from the affected tissues. This paper reviews comparative trace elemental concentrations of cancerous and noncancerous tissues using PIXE that has been reported in the published literature. 1. Introduction Studies have shown that the imbalance in the composition of trace metals which are generally recognized to be essential to normal human homeostasis besides accumulation of potentially toxic and nonessential trace metals may cause disease. The significance of the essential trace metals is indisputable due to their positive roles when in specific concentration ranges while on the other hand displaying toxic effects in relatively high or low concentration levels. Physiochemical properties of trace metals govern their uptake, intracellular distribution, and the binding of the metal compounds in biological systems. In spite of diverse physiochemical properties of metals compounds, there are three main predominant mechanisms related to metal genotoxicity. The first is the interference with cellular redox regulation and production of oxidative stress which does cause oxidative DNA damage or trigger signaling cascades that may lead to stimulation of malignant growth [1]. Second is the ability to inhibit the major DNA repairs mechanisms which may result in genomic instability and accumulation of critical mutations. And third is the deregulation of cell proliferation by induction of signaling pathways or ability to inactivate the growth controls

References

[1]  B. Ames and K. Shigenaga, “Oxidative stress is a major contribution to aging,” Annals of the New York Academy of Sciences, vol. 663, pp. 85–96, 1992.
[2]  D. Beyersmann and A. Hartwig, “Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms,” Archives of Toxicology, vol. 82, no. 8, pp. 493–512, 2008.
[3]  E. L. Feinendegen and K. Kasperek, “Medical aspects of trace element research,” in Trace Element Analytical Chemistry in Medicine and Biology, P. Bratter and P. Schramel, Eds., pp. 1–36, Walter de Gruyter, Berlin, Germany, 1980.
[4]  M. Yaman, “Comprehensive comparison of trace metal concentrations in cancerous and non-cancerous human tissues,” Current Medicinal Chemistry, vol. 13, no. 21, pp. 2513–2525, 2006.
[5]  D. S. Auld, “Zinc coordination sphere in biochemical zinc sites,” BioMetals, vol. 14, no. 3-4, pp. 271–313, 2001.
[6]  P. Kovacic and J. D. Jacintho, “Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer,” Current Medicinal Chemistry, vol. 8, no. 7, pp. 773–796, 2001.
[7]  H. Merzenich, A. Hartwig, W. Ahrens et al., “Biomonitoring on carcinogenic metals and oxidative DNA damage in a cross-sectional study,” Cancer Epidemiology Biomarkers and Prevention, vol. 10, no. 5, pp. 515–522, 2001.
[8]  Y. Wang, J. Fang, S. S. Leonard, and K. M. K. Rao, “Cadmium inhibits the electron transfer chain and induces reactive oxygen species,” Free Radical Biology and Medicine, vol. 36, no. 11, pp. 1434–1443, 2004.
[9]  International Agency for Research on Cancer, IARC Monographs on the Evaluation of Carcinogenic. Risks of Chemicals to Humans, vol. 1-2, supplement 7, IARC Scientific Publications, Lyon, France, 1984.
[10]  International Agency for Research on Cancer, IARC Be, Cd, Hg, and Exposures in the Glass Manufacturing Industry, IARC Monographs on the Evaluation of Carcinogenic Risks of Chemicals to Humans, vol. 58, IARC Scientific Publications, Lyon, France, 1993.
[11]  T. B. Kryston, A. B. Georgiev, P. Pissis, and A. G. Georgakilas, “Role of oxidative stress and DNA damage in human carcinogenesis,” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 711, no. 1-2, pp. 193–201, 2011.
[12]  M. Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005.
[13]  A. A. Konsta, E. E. Visvardis, K. S. Haveles, A. G. Georgakilas, and E. G. Sideris, “Detecting radiation-induced DNA damage: from changes in dielectric properties to programmed cell death,” Journal of Non-Crystalline Solids, vol. 305, no. 1–3, pp. 295–302, 2002.
[14]  V. K. Shukla, T. K. Adukia, S. P. Singh, C. P. Mishra, and R. N. Mishra, “Micronutrients, antioxidants, and carcinoma of the gallbladder,” Journal of Surgical Oncology, vol. 84, no. 1, pp. 31–35, 2003.
[15]  P. Lim, G. E. Wuenschell, V. Holland et al., “Peroxyl radical mediated oxidative DNA base damage: implications for lipid peroxidation induced mutagenesis,” Biochemistry, vol. 43, no. 49, pp. 15339–15348, 2004.
[16]  N. Gillard, M. Begusova, B. Castaing, and M. Spotheim-Maurizot, “Radiation affects binding of Fpg repair protein to an abasic site containing DNA,” Radiation Research, vol. 162, no. 5, pp. 566–571, 2004.
[17]  K. Geraki, M. J. Farquharson, D. A. Bradley, and R. P. Hugtenburg, “A synchrotron XRF study on trace elements and potassium in breast tissue,” Nuclear Instruments and Methods in Physics Research B, vol. 213, pp. 564–568, 2004.
[18]  D. R. Cousens, S. H. Ryan, and W. L. Griffin, “Self absorption and secondary fluorescence corrections of PIXE yields from multilayered targets,” in Proceedings of 5th Australian Conference on Nuclear Techniques of Analysis, pp. 58–60, Lucas Heights, Sydney, 1987.
[19]  J. A. Maxwell, W. J. Teesdale, and J. I. Campbell, “The Guelph PIXE software package,” Nuclear Instruments and Methods in Physics Research B, vol. 43, pp. 218–230, 1989.
[20]  C. G. Ryan, Quantitative Trace Element Imaging Using PIXE and the Nuclear Microprobe, John Wiley & Sons, North Ryde, Australia, 2001.
[21]  C. G. Ryan, D. R. Cousens, S. H. Sie, W. L. Griffin, G. F. Suter, and E. Clayton, “Quantitative pixe microanalysis of geological matemal using the CSIRO proton microprobe,” Nuclear Instruments and Methods in Physics Research B, vol. 47, no. 1, pp. 55–71, 1990.
[22]  S. E. Johansson and J. L. Campbell, PIXE-A Novel Technique for Elemental Analysis, John Wiley & Sons, Chichester, UK, 1988.
[23]  S. Boissier, M. Ferreras, O. Peyruchaud et al., “Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases,” Cancer Research, vol. 60, no. 11, pp. 2949–2954, 2000.
[24]  G. J. N. Raju, P. Sarita, M. R. Kumar et al., “Trace elemental correlation study in malignant and normal breast tissue by PIXE technique,” Nuclear Instruments and Methods in Physics Research B, vol. 247, no. 2, pp. 361–367, 2006.
[25]  K. Geraki, M. J. Farquharson, and D. A. Bradley, “X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue,” Physics in Medicine and Biology, vol. 49, no. 1, pp. 99–110, 2004.
[26]  H. W. Kuo, S. F. Chen, C. C. Wu, D. R. Chen, and J. H. Lee, “Serum and tissue trace elements in patients with breast cancer in Taiwan,” Biological Trace Element Research, vol. 89, no. 1, pp. 1–11, 2002.
[27]  K. H. Ng, D. A. Bradley, and L. M. Looi, “Elevated trace element concentrations in malignant breast tissues,” British Journal of Radiology, vol. 70, pp. 375–382, 1997.
[28]  M. Sugiyama, “Role of physiological antioxidants in chromium(VI)-induced cellular injury,” Free Radical Biology & Medicine, vol. 12, no. 5, pp. 397–407, 1992.
[29]  S. de Flora, M. Bagnasco, D. Serra, and P. Zanacchi, “Genotoxicity of chromium compounds. A review,” Mutation Research, vol. 238, no. 2, pp. 99–172, 1990.
[30]  J. Ye, X. Zhang, H. A. Young, Y. Mao, and X. Shi, “Chromium (IV)-induced nuclear factor-κB activation in intact cells via free radical reaction,” Carcinogenesis, vol. 16, pp. 2401–2405, 1995.
[31]  L. L. Miller, S. C. Miller, S. Y. Torti, Y. Tsuji, and F. M. Torti, “Iron-independent induction of ferritin H chain by tumor necrosis factor,” Proceedings of the National Academy of the United States of America, vol. 88, no. 11, pp. 4946–4950, 1991.
[32]  E. D. Weinberg, “Iron loading and disease surveillance,” Emerging Infectious Diseases, vol. 5, no. 3, pp. 346–352, 1999.
[33]  D. Armendariz and A. D. Vulpe, “11th International Symposium on Trace Elements in Man and Animals Abstracts,” The Journal of Nutrition, vol. 133, no. 5, pp. 203E–282E, 2003.
[34]  P. Sarita, G. J. Raju, A. S. Pradeep, T. R. Rutray, B. S. Reddy, and V. Vijayan, “Analysis of trace elements in blood sera of breast cancer patients by particle induced X-ray emission,” Journal of Radioanalytical and Nuclear Chemistry, vol. 294, no. 3, pp. 355–361, 2012.
[35]  K. Geraki, M. J. Farquharson, and D. A. Bradley, “Concentrations of Fe, Cu and Zn in breast tissue: a synchrotron XRF study,” Physics in Medicine and Biology, vol. 47, no. 13, pp. 2327–2339, 2002.
[36]  S. B. Reddy, M. J. Charles, M. R. Kumar et al., “Trace elemental analysis of adenoma and carcinoma thyroid by PIXE method,” Nuclear Instruments and Methods in Physics Research B, vol. 196, no. 3-4, pp. 333–339, 2002.
[37]  K. Maeda, Y. Yokode, Y. Sasa, H. Kusuyama, and A. M. Uda, “Multielemental analysis of human thyroid glands using particle induced X-ray emission (PIXE),” Nuclear Instruments and Methods in Physics Research B, vol. 22, no. 1–3, pp. 188–190, 1987.
[38]  M. Uda, K. Maeda, Y. Yokode Y, Sasa, and H. Kusuyama, “An attempt to diagnose cancer by PIXE,” Nuclear Instruments and Methods in Physics Research B, vol. 22, no. 1?3, pp. 184–187, 1987.
[39]  X. Zeng, M. Yao, M. Mu et al., “An attempt to diagnose cancer by PIXE,” Nuclear Instruments and Methods in Physics Research B, vol. 22, no. 1–3, pp. 184–187, 1987.
[40]  S. B. Reddy, M. J. Charles, G. J. N. Raju et al., “Trace elemental analysis of carcinoma kidney and stomach by PIXE method,” Nuclear Instruments and Methods in Physics Research B, vol. 207, no. 3, pp. 345–355, 2003.
[41]  W. M. Kwiatek, T. Drewniak, M. Gajda, M. Ga?ka, A. L. Hanson, and T. Cichocki, “Preliminary study on the distribution of selected elements in cancerous and non-cancerous kidney tissues,” Journal of Trace Elements in Medicine and Biology, vol. 16, no. 3, pp. 155–160, 2002.
[42]  I. Bertini, H. B. Gray, S. J. Lippard, and J. S. Valentine, Bioinorganic Chemistry, Viva Books Private, 1989.
[43]  H. Sigel, Ed., Carcinogenicity and Metal Ions, vol. 10 of Metal Ions in Biological Systems, Marcel Dekker, New York, NY, USA, 1980.
[44]  A. M. Standeven and K. E. Wetterhahn, “Chromium(VI) toxicity: uptake, reduction, and DNA damage,” Journal of the American College of Toxicology, vol. 8, no. 7, pp. 1275–1283, 1989.
[45]  G. J. N. Raju, M. J. Charles, S. B. Reddy et al., “Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique,” Nuclear Instruments and Methods in Physics Research B, vol. 229, no. 3-4, pp. 457–464, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133