全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Population-Sequencing as a Biomarker for Sample Characterization

DOI: 10.1155/2013/861823

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sequencing is accepted as the “gold” standard for genetic analysis and continues to be used as a validation and reference tool. The idea of using sequence analysis directly for sample characterization has been met with skepticism. However, herein, utility of direct use of sequencing to identify multiple genomes present in samples is presented and reviewed. All samples and “pure” isolates are populations of genomes. Population-Sequencing is the use of probabilistic matching tools in combination with large volumes of sequence information to identify genomes present, based on DNA analysis across entire genomes to determine genome assignments, to calculate confidence scores of major and minor genome content. Accurate genome identification from mixtures without culture purification steps can achieve phylogenetic classification by direct analysis of millions of DNA fragments. Genome sequencing data of mixtures can function as biomarkers for use to interrogate genetic content of samples and to establish a sample profile, inclusive of major and minor genome components, drill down to identify rare SNP and mutation events, compare relatedness of genetic content between samples, profile-to-profile, and provide a probabilistic or statistical scoring confidence for sample characterization and attribution. The application of Population-Sequencing will facilitate sample characterization and genome identification strategies. 1. Background A paradigm shift in microbial-forensics is emerging due to the potential of interrogating comprehensive genome content of samples via direct application of Next-Generation sequencing. The innovative process of sequencing populations of entire pathogenic mixtures as opposed to sequencing isolates, from diverse samples, and comparing to a standard reference is described. The approach greatly accelerates and vastly shortens the interval from time/point of contact, to specific pathogen and strain identification. This abbreviated timeline is critical to respond to and treat exposure victims. Moreover, tracing the origins of strains is accentuated, which facilitates rapid investigation. Population-Sequencing will be more productive to provide genome information than to singly clone one genome from the sample population and then analyze that genome individually cultured from it. Herein, direct and practical solutions as well as some current limiting dogmas in this area are presented. Whole genome sequencing (WGS) analysis has become feasible for molecular biology and comparative genetics due in large part to available tools, such as BLAST

References

[1]  S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[2]  S. Kurtz, A. Phillippy, A. L. Delcher et al., “Versatile and open software for comparing large genomes,” Genome Biology, vol. 5, no. 2, article R12, 2004.
[3]  A. Rahman and L. Pachter, “CGAL computing genome assembly likelihoods,” Genome Biology, vol. 14, no. 1, article R8, 2013.
[4]  X. V. Wang, N. Blades, J. Ding, R. Sultana, and G. Parmigiani, “Estimation of sequencing error rates in short reads,” BMC Bioinformatics, vol. 13, article 185, 2012.
[5]  J. Zhou, L. Wu, Y. Deng et al., “Reproducibility and quantitation of amplicon sequencing-based detection,” ISME Journal, vol. 5, no. 8, pp. 1303–1313, 2011.
[6]  J. Daugelaite, A. O'Driscoll, and R. D. Sleator, “An overview of multiple sequence alignments and cloud computing in bioinformatics,” ISRN Biomathematics, vol. 2013, Article ID 615630, 14 pages, 2013.
[7]  C. M. Fraser, T. D. Read, and K. E. Nelson, Eds., Microbial Genomes, Humana Press, New York, NY, USA, 2004.
[8]  J. P. Jakupciak and R. R. Colwell, “Biological agent detection technologies,” Molecular Ecology Resources, vol. 9, no. 1, pp. 51–57, 2009.
[9]  A. Kahvejian, J. Quackenbush, and J. F. Thompson, “What would you do if you could sequence everything?” Nature Biotechnology, vol. 26, no. 10, pp. 1125–1133, 2008.
[10]  P. M. Vallone, J. P. Jakupciak, and M. D. Coble, “Forensic application of the affymetrix human mitochondrial resequencing array,” Forensic Science International: Genetics, vol. 1, no. 2, pp. 196–198, 2007.
[11]  R. S. Just, O. M. Loreille, J. E. Molto et al., “Titanic's unknown child: the critical role of the mitochondrial DNA coding region in a re-identification effort,” Forensic Science International: Genetics, vol. 5, no. 3, pp. 231–235, 2011.
[12]  J. Handelsman, “Metagenomics: application of genomics to uncultured microorganisms,” Microbiology and Molecular Biology Reviews, vol. 68, no. 4, pp. 669–685, 2004.
[13]  K. A. Goddard, E. P. Whitlock, J. S. Berg et al., “Description and pilot results from a novel method for evaluating return of incidental findings from next-generation sequencing technologies,” Genetics in Medicine, vol. 15, no. 9, pp. 721–728, 2013.
[14]  C. Bertelli and G. Greub, “Rapid bacterial genome sequencing methods and applications in clinical microbiology,” Clinical Microbiology and Infection, vol. 19, no. 9, pp. 803–813, 2013.
[15]  D. V. Lim, J. M. Simpson, E. A. Kearns, and M. F. Kramer, “Current and developing technologies for monitoring agents of bioterrorism and biowarfare,” Clinical Microbiology Reviews, vol. 18, no. 4, pp. 583–607, 2005.
[16]  J. P. Jakupciak, J. Wells, and C. Dain, Eds., State of the DNA Sequencing Technology Market, Indigo Research, Annapolis, Md, USA, 2008.
[17]  Human Microbiome Project Consortium, “Structure, function and diversity of the healthy human microbiome,” Nature, vol. 486, no. 7402, pp. 207–214, 2012.
[18]  E. M. Bik, C. D. Long, G. C. Armitage et al., “Bacterial diversity in the oral cavity of 10 healthy individuals,” ISME Journal, vol. 4, no. 8, pp. 962–974, 2010.
[19]  D. A. Rasko, M. J. Rosovitz, G. S. A. Myers et al., “The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates,” Journal of Bacteriology, vol. 190, no. 20, pp. 6881–6893, 2008.
[20]  E. F. DeLong, C. M. Preston, T. Mincer et al., “Community genomics among stratified microbial assemblages in the ocean's interior,” Science, vol. 311, no. 5760, pp. 496–503, 2006.
[21]  D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster, “MEGAN analysis of metagenomic data,” Genome Research, vol. 17, no. 3, pp. 377–386, 2007.
[22]  T. J. Treangen and S. L. Salzberg, “Repetitive DNA and next-generation sequencing: computational challenges and solutions,” Nature Reviews Genetics, vol. 13, no. 1, pp. 36–46, 2012.
[23]  T. Y. Wang, C. H. Su, and H. K. Tsai, “MetaRank: a rank conversion scheme for comparative analysis of microbial community compositions,” Bioinformatics, vol. 27, no. 24, pp. 3341–3347, 2011.
[24]  A. C. McHardy and I. Rigoutsos, “What's in the mix: phylogenetic classification of metagenome sequence samples,” Current Opinion in Microbiology, vol. 10, no. 5, pp. 499–503, 2007.
[25]  S. G. Tringe, C. von Mering, A. Kobayashi et al., “Comparative metagenomics of microbial communities,” Science, vol. 308, no. 5721, pp. 554–557, 2005.
[26]  Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, “Na?ve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy,” Applied and Environmental Microbiology, vol. 73, no. 16, pp. 5261–5267, 2007.
[27]  J. Ravel, P. Gajer, L. Fu et al., “Twice-daily application of HIV microbicides alter the vaginal microbiota,” mBio, vol. 3, no. 6, 2012.
[28]  V. Jojic, T. Hertz, and N. Jojic, “Population sequencing using short reads: HIV as a case study,” Pacific Symposium on Biocomputing, pp. 114–125, 2008.
[29]  S. Pabinger, A. Dander, M. Fischer et al., “A survey of tools for variant analysis of nest generation genome sequencing data,” Briefings in Bioinformatics, 2013.
[30]  A. Bashir, A. A. Klammer, W. P. Robins et al., “A hybrid approach for the automated finishing of bacterial genomes,” Nature Biotechnology, vol. 30, no. 7, pp. 701–707, 2012.
[31]  S. L. Sawyer and H. S. Malik, “Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 47, pp. 17614–17619, 2006.
[32]  M. Weber, H. Teeling, S. Huang et al., “Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics,” ISME Journal, vol. 5, no. 5, pp. 918–928, 2011.
[33]  R. M. Reddy, M. H. Mohammed, and S. S. Mande, “TWARIT: an extremely rapid and efficient approach for phylogenetic classification of metagenomic sequences,” Gene, vol. 505, no. 2, pp. 259–265, 2012.
[34]  B. Liu, T. Gibbons, M. Ghodsi, T. Treangen, and M. Pop, “Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences,” BMC Genomics, vol. 12, supplement 2, article S4, 2011.
[35]  A. M. Phillippy, M. C. Schatz, and M. Pop, “Genome assembly forensics: finding the elusive mis-assembly,” Genome Biology, vol. 9, no. 3, article R55, 2008.
[36]  R. C. Green, H. L. Rehm, and I. S. Kohane, “Clinical genome sequencingin,” in Genomic and Personalized Medicine, G. S. Ginsburg and H. F. Willard, Eds., chapter 9, Academic Press, New York, NY, USA, 2nd edition, 2012.
[37]  M. C. J. Maiden, J. A. Bygraves, E. Feil et al., “Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3140–3145, 1998.
[38]  K. Sundberg, M. Clement, Q. Snell, D. Ventura, M. Whiting, and K. Crandall, “Phylogenetic search through partial tree mixing,” BMC Bioinformatics, vol. 13, supplement 13, article S8, 2012.
[39]  R. Urwin and M. C. J. Maiden, “Multi-locus sequence typing: a tool for global epidemiology,” Trends in Microbiology, vol. 11, no. 10, pp. 479–487, 2003.
[40]  K. I. Berns, A. Casadevall, M. L. Cohen et al., “Adaptations of avian flu virus are a cause for concern,” Science, vol. 335, no. 6069, pp. 660–661, 2012.
[41]  E. J. Feil and M. C. Enright, “Analyses of clonality and the evolution of bacterial pathogens,” Current Opinion in Microbiology, vol. 7, no. 3, pp. 308–313, 2004.
[42]  B. G. Spratt, “Exploring the concept of clonality in bacteria,” Methods in Molecular Biology, vol. 266, pp. 323–352, 2004.
[43]  M. Pérez-Losada, D. V. Jobes, F. Sinangil et al., “Phylodynamics of HIV-1 from a phase III AIDS vaccine trial in Bangkok, Thailand,” PLoS ONE, vol. 6, no. 3, Article ID e16902, 2011.
[44]  A. Mellmann, D. Harmsen, C. A. Cummings et al., “Prospective genomic characterization of the german enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology,” PLoS ONE, vol. 6, no. 7, Article ID e22751, 2011.
[45]  D. Arndt, J. Xia, Y. Liu et al., “METAGENassist: a comprehensive web server for comparative metagenomics,” Nucleic Acids Research, vol. 40, no. 1, pp. W88–W95, 2012.
[46]  M. H. Mohammed, A. Dutta, T. Bose, S. Chadaram, and S. S. Mande, “DELIMINATE—a fast and efficient method for loss-less compression of genomic sequences,” Bioinformatics, vol. 28, no. 19, pp. 2527–2529, 2012.
[47]  R. K. Patel and M. Jain, “NGS QC toolkit: a toolkit for quality control of next generation sequencing data,” PLoS ONE, vol. 7, no. 2, Article ID e30619, 2012.
[48]  S. Zhao, K. Prenger, L. Smith et al., “Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing,” BMC Genomics, vol. 14, article 425, 2013.
[49]  D. J. Liu and S. M. Leal, “SEQCHIP: a powerful method to integrate sequence and genotype data for the detection of rare variant associations,” Bioinformatics, no. 13, pp. 1745–1751, 2012.
[50]  N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and C. Huttenhower, “Metagenomic microbial community profiling using unique clade-specific marker genes,” Nature Methods, vol. 9, pp. 811–814, 2012.
[51]  J. P. Jakupciak, J. M. Wells, J. S. Lin, and A. B. Feldman, “Population analysis of bacterial samples for individual identification in forensics application,” Journal of Data Mining in Genomics and Proteomics, vol. 4, article 138, 2013.
[52]  R. A. Farrer, D. A. Henk, D. MacLean, D. J. Studholme, and M. C. Fisher, “Using false discovery rates to benchmark SNP-callers in next-generation sequencing projects,” Scientific Reports, vol. 3, article 1512, 2013.
[53]  V. Bansal, “A statistical method for the detection of variants from next-generation resequencing of DNA pools,” Bioinformatics, vol. 26, no. 12, Article ID btq214, pp. i318–i324, 2010.
[54]  B. Budowle, S. E. Schutzer, J. P. Burans et al., “Quality sample collection, handling, and preservation for an effective microbial forensics program,” Applied and Environmental Microbiology, vol. 72, no. 10, pp. 6431–6438, 2006.
[55]  J. Fletcher, C. Bender, B. Budowle, et al., “Plant pathogen forensics: capabilities, needs and recommendations,” Microbiology and Molecular Biology Reviews, vol. 70, no. 2, pp. 450–471, 2006.
[56]  T. Massingham and N. Goldman, “All your base: a fast and accurate probabilistic approach to base calling,” Genome Biology, vol. 13, article R13, 2012.
[57]  B. Temperton and S. J. Giovannoni, “Metagenomics: microbial diversity through a scratched lens,” Current Opinion in Microbiology, vol. 15, no. 5, pp. 605–612, 2012.
[58]  S. M. Huse, J. A. Huber, H. G. Morrison, M. L. Sogin, and D. M. Welch, “Accuracy and quality of massively parallel DNA pyrosequencing,” Genome Biology, vol. 8, no. 7, article R143, 2007.
[59]  P. Gajer, M. Schatz, and S. L. Salzberg, “Automated correction of genome sequence errors,” Nucleic Acids Research, vol. 32, no. 2, pp. 562–569, 2004.
[60]  S. L. Salzberg, J. C. D. Hotopp, A. L. Delcher et al., “Serendipitous discovery of Wolbachia genomes in multiple Drosophila species,” Genome Biology, vol. 6, no. 3, article R23, 2005.
[61]  K. Chen and L. Pachter, “Bioinformatics for whole-genome shotgun sequencing of microbial communities,” PLoS Computational Biology, vol. 1, no. 2, pp. 106–112, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133