全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generation of Multiple Focal Hole Segments Using Double-Ring Shaped Azimuthally Polarized Beam

DOI: 10.1155/2013/451715

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigated the focusing properties of a double-ring-shaped azimuthally polarized beam tightly focused with a high NA lens and a binary phase filter. We observe that by using 3 belts and 5 belts binary phase filters novel focal patterns including splitting of focal rings and multiring focus are obtained. We also found that a suitably designed phase structure can shift the focal rings along optical axis. The author expects such investigation is worthwhile for optical manipulation and material processing technologies. 1. Introduction Growing interest in the generation of three-dimensional (3D) optical beams that are dark regions in space surrounded by light is driven by wide ranging applications including dark optical traps for atoms [1], manipulation, guiding and binding of microparticles and biological cells [2], and erase beams for super-resolution fluorescence microscopy [3]. Such beams are also known as twice-closed tubular optical structure (TCTOS) [4], optical bubbles [5], and hollow dark spherical spots [6]. Optical beams with oscillating on-axis intensity due to interference resulting in 3D intensity voids and 3D optical chains were proposed recently for trapping of multiple particles along the beam propagation and for controllable particle delivery [7]. Over the past years, a variety of techniques have been proposed for generating such optical bottle beams for applications in optical tweezers and atom traps [8–15]. Recently, a subwavelength focal hole (~0.5 ) with a quite long depth of focus (~48 ) is achieved near the focus by tight focusing of double-ring-shaped azimuthally polarized beam with high NA lens axicon [16]. In this paper we investigate the focal properties of the tightly focused azimuthally polarized double-ring-shaped beam using 3 belts and 5 belts binary phase filters. We observed that by properly designing the binary phase filters one can achieve many novel focal patterns including splitting of focal rings and generation of multiring structures. 2. Theoretical Work A schematic diagram of the suggested method is shown in Figure 1. The analysis was performed on the basis of Richards and Wolf’s vectorial diffraction method [17] widely used for high-NA focusing systems at arbitrary incident polarization. In the case of the azimuthally incident polarization, adopting the cylindrical coordinates and and the notations of [18], the electric field in the vicinity of the focal region can be written as Here is relative amplitude, = arcsin ( ) is the maximum aperture angle with ( ) is the numerical aperture, and is the index of

References

[1]  N. Friedman, A. Kaplan, and N. Davidson, “Dark optical traps for cold atoms,” Advances in Atomic, Molecular, and Optical Physics, vol. 48, pp. 99–151, 2002.
[2]  T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” Journal of Physics B, vol. 43, Article ID 102001, 2010.
[3]  T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, and M. Fuji, “Two point separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique,” Optics Express, vol. 11, pp. 3271–3276, 2003.
[4]  J. Garcia-Sucerquia, F. F. Medina, and G. Matteucci, “Optical tubular structures produced by diffraction of circular apertures,” Optics and Lasers in Engineering, vol. 42, no. 1, pp. 61–70, 2004.
[5]  W. Chen and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Optics Communications, vol. 265, pp. 411–417, 2006.
[6]  N. Bokor and N. Davidson, “Generation of a hollow dark spherical spot by focusing of a radially polarized Laguerre-Gaussian beam,” Optics Letters, vol. 31, pp. 149–151, 2006.
[7]  B. P. S. Ahluwalia, W. C. Cheong, X. C. Yuan et al., “Design and fabrication of a double-axicon for generation of tailorable self-imaged three-dimensional intensity voids,” Optics Letters, vol. 31, no. 7, pp. 987–989, 2006.
[8]  J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Optics Letters, vol. 25, no. 4, pp. 191–193, 2000.
[9]  B. P. S. Ahluwalia, X. C. Yuan, and S. H. Tao, “Transfer of “pure” on-axis spin angular momentum to the absorptive particle using self-imaged bottle beam optical tweezers system,” Optics Express, vol. 12, no. 21, pp. 5172–5177, 2004.
[10]  D. Yelin, B. E. Bouma, and G. J. Tearney, “Generating an adjustable three-dimensional dark focus,” Optics Letters, vol. 29, no. 7, pp. 661–663, 2004.
[11]  J. X. Pu, X. Y. Liu, and S. Nemoto, “Partially coherent bottle beams,” Optics Communications, vol. 252, pp. 7–11, 2005.
[12]  L. Isenhower, W. Williams, A. Dally, and M. Saffman, “Atom trapping in an interferometrically generated bottle beam trap,” Optics Letters, vol. 34, no. 8, pp. 1159–1161, 2009.
[13]  P. Xu, X. He, J. Wang, and M. Zhan, “Trapping a single atom in a blue detuned optical bottle beam trap,” Optics Letters, vol. 35, no. 13, pp. 2164–2166, 2010.
[14]  V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Optics Express, vol. 18, no. 3, pp. 3137–3142, 2010.
[15]  B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Optics Letters, vol. 36, no. 11, pp. 2014–2016, 2011.
[16]  K. Lalithambigai, P. Suresh, V. Ravi et al., “Generation of sub wavelength super-long dark channel using high NA lens axicon,” Optics Letters, vol. 37, pp. 999–1001, 2012.
[17]  B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proceedings of the Royal Society of London A, vol. 253, no. 1274, pp. 358–379, 1959.
[18]  K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Optics Express, vol. 7, no. 2, pp. 77–87, 2000.
[19]  K. B. Rajesh, N. V. Suresh, P. M. Anbarasan, K. Gokulakrishnan, and G. Mahadevan, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Optics & Laser Technology, vol. 43, no. 7, pp. 1037–1040, 2011.
[20]  G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Optics Letters, vol. 36, pp. 3479–3481, 2011.
[21]  X. Gao, S. Hu, and J. Wang, “Optical manipulation of azimuthally polarized beam altered by phase plate,” IEEE Computer Society, vol. 163, pp. 657–661, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133