全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spectral Line Broadening in Dense Plasmas

DOI: 10.1155/2011/850807

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spectral line broadening is calculated based on a microscopic quantum statistical approach. By using thermodynamic Green's function, plasma correlation effect, electrostatic and dynamic screening, and perturber-radiator interaction are taken into account. Ions are treated in quasistatic approximation due to Stark effect. The line broadening for 6678?? (21P-31D) and 5016?? (21S-31P) transitions of neutral helium is calculated in the electron density range and temperature range , and the density and temperature dependence of the line width are investigated. A good agreement is shown by comparing the calculated values with the existing experimental and theoretical data. 1. Introduction Optical spectroscopy is one of the most important diagnostic tools to characterize warm and dense plasmas. The emitted radiation from a plasma is perturbed by interaction between a radiating atom and surrounding particles, which leads to spectral line broadening; the most effective mechanism is Stark broadening (pressure broadening). Line profile calculation is an interesting technique to determine the internal plasma parameters, such as density, temperature, and composition, to study the microscopic processes within plasma, and to check the quality of the predicted parameters [1, 2]. Several semiclassical and quantum-mechanical approaches have been investigated to calculate spectral line shapes in plasmas [1, 3–16]. Helium lines were calculated by Griem et al. [1, 3] in a semiclassical approach, the so-called standard theory (ST), using an impact approximation for electrons with a cut-off procedure, while ions were treated in a quasistatic approximation due to the static microfield of perturbers. The electron broadening impact parameters are calculated for neutral helium lines by using semiclassical perturbation formalisms based on the approach developed by Sahal-Bréchot [4, 5]. Furthermore, the convergent theory was improved by Bassalo et al. [6] in a many-level approximation to calculate the Stark broadening parameters of neutral helium lines. Recently, molecular dynamics (MD) simulations have been performed by Calisti et al. [17] and Gigosos et al. [18, 19] by including the time sequence of the microfield distribution as a random process. The quantum-mechanical Green's function method is considered in this paper to calculate the He I spectral lines in dense plasmas, assuming local thermal equilibrium (LTE) [20–26]. Spectral line profiles of helium are important in plasma diagnostic. Some of the lines are measured in a pulsed arc plasma by Pérez et al. [27–29], studied in

References

[1]  H. R. Griem, Spectral Line Broadening by Plasmas, Academic Press, New York, NY, USA, 1974.
[2]  W. Lochte-Holtgreven, Plasma Diagnostics, North-Holland, Amsterdam, The Netherlands, 1968.
[3]  H. R. Griem, M. Baranger, A. C. Kolb, and G. Oertel, “Stark broadening of neutral helium lines in a plasma,” Physical Review, vol. 125, no. 1, pp. 177–195, 1962.
[4]  S. Sahal-Bréchot, “Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma,” Astronomy & Astrophysics, vol. 1, pp. 91–123, 1969.
[5]  S. Sahal-Bréchot, “Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma (continued),” Astronomy & Astrophysics, vol. 2, pp. 322–354, 1969.
[6]  J. M. Bassalo, M. Cattani, and V. S. Walder, “Convergent calculations for electron impact broadening and shift of neutral helium lines,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 28, no. 2, pp. 75–80, 1982.
[7]  A. C. Kolb and H. Griem, “Theory of line broadening in multiplet spectra,” Physical Review, vol. 111, no. 2, pp. 514–521, 1958.
[8]  M. Baranger, “Spectral line broadening in plasmas,” in Atomic and Molecular Processes, D. R. Bates, Ed., chapter 13, Academic Press, New York, NY, USA, 1962.
[9]  H. Margenau and M. Lewis, “Structure of spectral lines from plasmas,” Reviews of Modern Physics, vol. 31, no. 3, pp. 569–615, 1959.
[10]  E. W. Smith, J. Cooper, and C. R. Vidal, “Unified classical-path treatment of Stark broadening in plasmas,” Physical Review, vol. 185, no. 1, pp. 140–151, 1969.
[11]  R. W. Lee, “Plasma line shapes for selected transitions in hydrogen-, helium- and lithium-like ions,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 40, no. 5, pp. 561–568, 1988.
[12]  M. Baranger, “General impact theory of pressure broadening,” Physical Review, vol. 112, no. 3, pp. 855–865, 1958.
[13]  D. Voslamber, “Unified quantum statistical formulation of pressure broadening,” Physics Letters A, vol. 40, no. 3, pp. 266–268, 1972.
[14]  T. Hussey, J. W. Dufty, and C. F. Hooper Jr., “Kinetic theory of spectral line broadening,” Physical Review A, vol. 12, no. 3, pp. 1084–1093, 1975.
[15]  D. B. Boercker and J. W. Dufty, “Quantum kinetic theory of time-correlation functions,” Physical Review A, vol. 23, no. 4, pp. 1952–1968, 1981.
[16]  H. Nguyen, M. Koenig, D. Benredjem, M. Caby, and G. Coulaud, “Atomic structure and polarization line shift in dense and hot plasmas,” Physical Review A, vol. 33, no. 2, pp. 1279–1290, 1986.
[17]  A. Calisti, R. Stamm, and B. Talin, “Simulation calculation of the ion-dynamic effect on overlapping neutral helium lines,” Physical Review A, vol. 38, no. 9, pp. 4883–4886, 1988.
[18]  M. A. Gigosos, M. A. Gonzalez, B. Talin, and A. Calisiti, “Molecular dynamics simulations of He I Stark broadened line profiles,” in Proceedings of the 17th International Conference on Spectral Line Shapes, E. Dalimier, Ed., p. 451, Frontier Group, Paris, France, 2004.
[19]  M. A. Gigosos, M. A. Gonzalez, B. Talin, and A. Calisiti, unpublished.
[20]  W.-D. Kraeft, D. Kremp, W. Ebeling, and G. R?pke, Quantum Statistics of Charged Particle Systems, Akademie, Berlin, Germany, 1986.
[21]  S. Günter, “Stark shift and broadening of hydrogen spectral lines,” Contributions to Plasma Physics, vol. 29, no. 4-5, pp. 479–487, 1989.
[22]  S. Günter, L. Hitzschke, and G. R?pke, “Hydrogen spectral lines with the inclusion of dense-plasma effects,” Physical Review A, vol. 44, no. 10, pp. 6834–6844, 1991.
[23]  S. Günter and A. K?nies, “Quantum mechanical electronic width and shift of spectral lines over the full line profile-electronic asymmetry,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 52, no. 6, pp. 819–824, 1994.
[24]  S. Günter, Optische Eigenschaften dichter Plasmen [Habilitation thesis], Rostock University, Rostock, Germany, 1966.
[25]  S. Sorge, A. Wierling, G. R?pke, W. Theobald, R. Sauerbrey, and T. Wilhein, “Diagnostics of a laser-induced dense plasma by hydrogen-like carbon spectra,” Journal of Physics B, vol. 33, no. 16, pp. 2983–3000, 2000.
[26]  B. Omar, S. Günter, A. Wierling, and G. R?pke, “Neutral helium spectral lines in dense plasmas,” Physical Review E, vol. 73, no. 5, Article ID 056405, 2006.
[27]  C. Pérez, I. de la Rosa, A. M. de Frutos, and S. Mar, “Calibration of the Stark-broadening parameters for some He i lines,” Physical Review A, vol. 44, no. 10, pp. 6785–6790, 1991.
[28]  C. Pérez, R. Santamarta, M. I. de la Rosa, and S. Mar, “Stark broadening of neutral helium lines and spectroscopic diagnostics of pulsed helium plasma,” European Physical Journal D, vol. 27, no. 1, pp. 73–75, 2003.
[29]  C. Pérez, J. A. Aparicio, I. de la Rosa, S. Mar, and M. A. Gigosos, “Calibration of the Stark-broadening parameters of the 728.1-nm He i line,” Physical Review E, vol. 51, no. 4, pp. 3764–3766, 1995.
[30]  M. S. Dimitrijevi? and S. Sahal-Bréchot, “Stark broadening of neutral helium lines,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 31, no. 4, pp. 301–313, 1984.
[31]  V. Milosavljevi? and S. Djeni?e, “Ion contribution to the astrophysical important 447.15, 587.56 and 667.82 nm He I spectral lines broadening,” Astronomy & Astrophysics, vol. 393, no. 2, pp. 721–726, 2002.
[32]  A. Beauchamp, F. Wesemael, and P. Bergeron, “Spectroscopic studies of DB white dwarfs: improved Stark profiles for optical transitions of neutral helium,” Astrophysical Journal, Supplement Series, vol. 108, no. 2, pp. 559–573, 1997.
[33]  M. S. Dimitrijevi?, “On the variation of Stark line widths within a supermultiplet,” Astronomy & Astrophysics, vol. 112, no. 2, pp. 251–256, 1982.
[34]  F. Leone and A. C. Lanzafame, “Visible neutral helium lines in main sequence B-type stars: observations and NLTE calculations,” Astronomy & Astrophysics, vol. 330, no. 1, pp. 306–310, 1998.
[35]  J. A. Harvin, D. R. Gies, W. G. Bagnuolo Jr., L. R. Penny, and M. L. Thaller, “Tomographic separation of composite spectra. VIII. The physical properties of the massive compact binary in the triple star system HD 36486 (δ Orionis A),” Astrophysical Journal, vol. 565, no. 2, pp. 1216–1230, 2002.
[36]  J. Yan, Q. Liu, and H. Hang, “Optical spectroscopic observations of CI Camelopardalis,” Astronomical Journal, vol. 133, no. 4, pp. 1478–1484, 2007.
[37]  K. Hiroi, Y. Moritani, D. Nogami, et al., “Spectroscopic observations of the WZ Sge-type dwarf nova GW librae during its 2007 superoutburst,” Publications of the Astronomical Society of Japan, vol. 61, no. 4, pp. 697–705, 2009.
[38]  M. Iye, M.-H. Ulrich, and M. Peimbert, “High resolution spectrum of the starburst galaxy tololo 1924–416,” Astronomy & Astrophysics, vol. 186, no. 1-2, pp. 84–94, 1987.
[39]  W. Kollatschny, K. Bischoff, E. L. Robinson, W. F. Welsh, and G. J. Hill, “Short-term emission line and continuum variations in Mrk 110,” Astronomy & Astrophysics, vol. 379, no. 1, pp. 125–135, 2001.
[40]  H. Soltwisch and H. J. Kusch, “Experimental Stark profile determination of some plasma broadened He II-lines,” Zeitschrift Naturforschung Teil A, vol. 34, p. 300, 1979.
[41]  J. M. Bassalo, M. Cattani, and V. S. Walder, “Semiclassical convergent calculations for the electron-impact broadening and shift of some lines of neutral helium in a hot plasma,” Physical Review A, vol. 22, no. 3, pp. 1194–1197, 1980.
[42]  H. F. Berg, A. W. Ali, R. Lincke, and H. R. Griem, “Measurement of Stark profiles of neutral and ionized helium and hydrogen lines from shock-heated plasmas in electromagnetic T tubes,” Physical Review, vol. 125, no. 1, pp. 199–206, 1962.
[43]  W. T. Chiang, D. P. Murphy, Y. G. Chen, and H. R. Griem, “Electron densities from Stark widths of the HeI 5016 ? and HeI 3889 ? lines and helium-neon laser interferometry,” Zeitschrift Naturforschung Teil A, vol. 32, p. 818, 1977.
[44]  C. S. Diatta, , Ph.D. thesis unpublished, University d’Orleans, Paris, France, 1977.
[45]  V. Milosavljevi? and S. Djeni?e, “Ion contribution to the astrophysical important 388.86, 471.32 and 501.56 nm He I spectral lines broadening,” New Astronomy, vol. 7, no. 8, pp. 543–551, 2002.
[46]  D. E. Kelleher, “Stark broadening of visible neutral helium lines in a plasma,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 25, no. 3, pp. 191–220, 1981.
[47]  Z. Mijatovi?, N. Konjevi?, M. Ivkovi?, and R. Kobilarov, “Influence of ion dynamics on the width and shift of isolated He i lines in plasmas. II,” Physical Review E, vol. 51, no. 5, pp. 4891–4896, 1995.
[48]  B. T. Vuji?i?, S. Djurovi?, and J. Halenka, “The Stark broadening of the He I 667.8 nm line,” Zeitschrift für Physik D, vol. 11, no. 2, pp. 119–121, 1988.
[49]  C. F. Hooper Jr., “Low-frequency component electric microfield distributions in plasmas,” Physical Review, vol. 165, no. 1, pp. 215–222, 1968.
[50]  St. B?ddeker, S. Günter, A. K?nies, L. Hitzschke, and H. J. Kunze, “Shift and width of the Hα line of hydrogen in dense plasmas,” Physical Review E, vol. 47, no. 4, pp. 2785–2791, 1993.
[51]  D. Salzmann, Atomic Physics in Hot Plasmas, Oxford University Press, Oxford, UK, 1998.
[52]  E. Dufour, A. Calisti, B. Talin et al., “Charge-charge coupling effects on dipole emitter relaxation within a classical electron-ion plasma description,” Physical Review E, vol. 71, no. 6, Article ID 066409, 9 pages, 2005.
[53]  D. Kremp, M. Schlanges, and W.-D. Kraeft, Quantum Statistics of Nonideal Plasmas, Springer, Berlin, Germany, 2005.
[54]  G. R?pke and L. Hitzschke, “Shift and broadening of spectral lines in non-ideal plasmas,” in Proceedings of the 9th International Conference on Spectral Line Shapes, J. Szudy, Ed., p. 49, Ossolineum, Waroclaw, Poland, 1989.
[55]  L. Hitzschke and S. Günter, “The influence of many-particle effects beyond the Debye approximation on spectral line shapes in dense plasmas,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 56, no. 3, pp. 423–441, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133