全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiphoton Ionization and Fragmentation of Hydrogen Chloride: A Diatomic Still Good for a Surprise

DOI: 10.1155/2011/410108

Full-Text   Cite this paper   Add to My Lib

Abstract:

The competition between multiphoton ionization and fragmentation in the diatomic molecule hydrogen chloride is reviewed. Emphasis is laid on recent experimental results employing chemical imaging methods in order to obtain kinetic energy distributions and angular distributions of photoproducts. The energy range considered is 15 to 20?eV, equivalent to the absorption of three or four photons in the ultraviolet wavelength range. The role of Rydberg states as resonantly excited intermediate states in the ionization/fragmentation processes is assessed. Mixing among states gives rise to peculiarly shaped double minimum potential energy curves which allow for the production of hydrogen and chlorine atomic and ionic fragments via several competing pathways, in addition to the production of molecular HCl+ ions. States with different electronic properties show a qualitatively different behaviour from states. Accidental resonances between states of differing orbital angular momentum or multiplicity serve to override these differences and cause subtle as well as significant deviations from the unperturbed behaviour. 1. Introduction Hydrogen halides are molecules of fundamental interest in chemistry and physics and have extensively been studied theoretically as well as experimentally. In many respects, they can be regarded as prototypes of heteronuclear diatomic molecules. While the electronic ground states of the hydrogen halides are in general well understood, their Rydberg and valence electronic structure still bears some surprises for the experimentalist and for the theoretician. For example, competing multiphoton dissociation and ionization processes are observed as a consequence of Rydberg-valence interactions at large internuclear distances, a behaviour which is primarily associated with and intermediate states. The focus of the work summarized here lies in the investigation of the photoionization of HCl following two-photon excitation of its Rydberg states. For HBr [1–3], and to a lesser extent for HI [4], similar studies and similar conclusions have been reported, whereas much less is known about HF, most probably due to the difficulty of state-selective fluorine atom detection [5] and to the more problematic chemical properties of HF making gas handling significantly more demanding. Three main issues are associated with resonance enhanced multiphoton ionization of HCl. First, if the state is accessed as resonantly intermediate state, its peculiar double-well structure opens the door for subsequent photoabsorption at very large internuclear distances,

References

[1]  S. Manzhos, C. Romanescu, H. P. Loock, and J. G. Underwood, “Two-photon state selection and angular momentum polarization probed by velocity map imaging: application to H atom photofragment angular distributions from the photodissociation of two-photon state selected HCl and HBr,” Journal of Chemical Physics, vol. 121, no. 23, pp. 11802–11809, 2004.
[2]  C. Romanescu and H. P. Loock, “Photoelectron imaging following 2 + 1 multiphoton excitation of HBr,” Physical Chemistry Chemical Physics, vol. 8, no. 25, pp. 2940–2949, 2006.
[3]  C. Romanescu and H. P. Loock, “Proton formation in 2+1 resonance enhanced multiphoton excitation of HCl and HBr via (Ω = 0) Rydberg and ion-pair states,” Journal of Chemical Physics, vol. 127, no. 12, Article ID 124304, 2007.
[4]  H. P. Loock, B. L. G. Bakker, and D. H. Parker, “Photodissociation of superexcited states of hydrogen iodide: a photofragment imaging study using resonant multiphoton excitation at 13.39 and 15.59 eV,” Canadian Journal of Physics, vol. 79, no. 2-3, pp. 211–227, 2001.
[5]  M. Roth, C. Maul, K. H. Gericke, T. Senga, and M. Kawasaki, “State and energy characterisation of fluorine atoms in the A band photodissociation of F2,” Chemical Physics Letters, vol. 305, no. 5-6, pp. 319–326, 1999.
[6]  D. W. Chandler and P. L. Houston, “Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization,” The Journal of Chemical Physics, vol. 87, no. 2, pp. 1445–1447, 1986.
[7]  D. H. Parker and A. T. J. B. Eppink, “Photoelectron and photofragment velocity map imaging of state-selected molecular oxygen dissociation/ionization dynamics,” Journal of Chemical Physics, vol. 107, no. 7, pp. 2357–2362, 1997.
[8]  A. T. J. B. Eppink and D. H. Parker, “Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen,” Review of Scientific Instruments, vol. 68, no. 9, pp. 3477–3484, 1997.
[9]  A. I. Chichinin, T. Einfeld, C. Maul, and K. H. Gericke, “Three-dimensional imaging technique for direct observation of the complete velocity distribution of state-selected photodissociation products,” Review of Scientific Instruments, vol. 73, no. 4, p. 1856, 2002.
[10]  A. I. Chichinin, T. Einfeld, K.-H. Gericke, and C. Maul, “3D imaging technique—observation of the three-dimensional product momentum distribution,” in Imaging in Molecular Dynamics: Technology and Applications, B. Whitaker, Ed., Cambridge University Press, Cambridge, UK, 2003.
[11]  S. Kauczok, N. G?decke, A. I. Chichinin, M. Veckenstedt, C. Maul, and K. H. Gericke, “Three-dimensional velocity map imaging: setup and resolution improvement compared to three-dimensional ion imaging,” Review of Scientific Instruments, vol. 80, no. 8, Article ID 083301, 2009.
[12]  A. I. Chichinin, K. H. Gericke, S. Kauczok, and C. Maul, “Imaging chemical reactions—3D velocity mapping,” International Reviews in Physical Chemistry, vol. 28, no. 4, pp. 607–680, 2009.
[13]  D. S. Green, G. A. Bickel, and S. C. Wallace, “(2 + 1) resonance enhanced multiphoton ionization of hydrogen chloride in a pulsed supersonic jet: spectroscopic survey,” Journal of Molecular Spectroscopy, vol. 150, no. 2, pp. 303–353, 1991.
[14]  D. S. Green, G. A. Bickel, and S. C. Wallace, “(2 + 1) resonance enhanced multiphoton ionization of hydrogen chloride in a pulsed supersonic jet: spectroscopy and Rydberg ~ valence interactions of the 1Σ+(0+) and 3Σ?(1, 0+) states,” Journal of Molecular Spectroscopy, vol. 150, no. 2, pp. 354–387, 1991.
[15]  D. S. Green, G. A. Bickel, and S. C. Wallace, “(2 + 1) resonance enhanced multiphoton ionization of hydrogen chloride in a pulsed supersonic jet: vacuum wavenumbers of rotational lines with detailed band analysis for excited electronic states of HCl,” Journal of Molecular Spectroscopy, vol. 150, no. 2, pp. 388–469, 1991.
[16]  á. Kvaran, H. Wang, K. Matthiasson, A. Bodi, and E. Jónsson, “Two-dimensional (2+n) resonance enhanced multiphoton ionization of HCl: photorupture channels via the F1Δ Rydberg state and ab initio spectra,” Journal of Chemical Physics, vol. 129, no. 16, Article ID 164313, 2008.
[17]  K. Matthíasson, H. Wang, and á. Kvaran, “Two-dimensional (2 + n) REMPI of HCl: observation and characterisation of a new Rydberg state,” Journal of Molecular Spectroscopy, vol. 255, no. 1, pp. 1–5, 2009.
[18]  á. Kvaran, K. Matthiasson, and H. Wang, “Two-dimensional (2+n) resonance enhanced multiphoton ionization of HCl: state interactions and photorupture channels via low-energy triplet Rydberg states,” Journal of Chemical Physics, vol. 131, no. 4, Article ID 044324, 2009.
[19]  C. Romanescu, S. Manzhos, D. Boldovsky, J. Clarke, and H. P. Loock, “Superexcited state reconstruction of HCl using photoelectron and photoion imaging,” Journal of Chemical Physics, vol. 120, no. 2, pp. 767–777, 2004.
[20]  A. I. Chichinin, C. Maul, and K. H. Gericke, “Photoionization and photodissociation of HCl(B1Σ+, J = 0) near 236 and 239 nm using three-dimensional ion imaging,” Journal of Chemical Physics, vol. 124, no. 22, Article ID 224324, 2006.
[21]  A. I. Chichinin, P. S. Shternin, N. G?decke et al., “Intermediate state polarization in multiphoton ionization of HCl,” Journal of Chemical Physics, vol. 125, no. 3, Article ID 034310, 2006.
[22]  S. Kauczok, C. Maul, A. I. Chichinin, and K. H. Gericke, “Proton formation dynamics in the REMPI[2+n] process via the F1Δ2 and f3Δ2 Rydberg states of HCl investigated by three-dimensional velocity mapping,” Journal of Chemical Physics, vol. 133, Article ID 024301, 2010.
[23]  A. J. Yencha, D. Kaur, R. J. Donovan et al., “Ion-pair formation in the photodissociation of HCl and DCl,” The Journal of Chemical Physics, vol. 99, no. 7, pp. 4986–4992, 1993.
[24]  J. B. Nee, M. Suto, and L. C. Lee, “Quantitative photoabsorption and fluorescence study of HCl in vacuum ultraviolet,” The Journal of Chemical Physics, vol. 85, no. 2, pp. 719–724, 1986.
[25]  P. Natalis, P. Pennetreau, L. Longton, and J. E. Collin, “Autoionization in HCl and DCl by photoelectron spectroscopy,” Chemical Physics, vol. 73, no. 1-2, pp. 191–201, 1982.
[26]  H. Frohlich and M. Glass-Maujean, “Photoabsorption, photodissociation, and photoionization cross sections of HCl,” Physical Review A, vol. 42, no. 3, pp. 1396–1404, 1990.
[27]  H. Frohlich, P. M. Guyon, and M. Glass-Maujean, “HCl+ X vibrational states investigated from the HCl threshold photoelectron spectrum,” Physical Review A, vol. 44, no. 3, pp. 1791–1795, 1991.
[28]  E. de Beer, B. G. Koenders, M. P. Koopmans, and C. A. de Lange, “Multiphoton ionization processes in HCl studied by photoelectron spectroscopy,” Journal of the Chemical Society, Faraday Transactions, vol. 86, no. 11, pp. 2035–2041, 1990.
[29]  A. D. Pradhan, K. P. Kirby, and A. Dalgarno, “Theoretical study of HCl: potential curves, radiative lifetimes, and photodissociation cross sections,” The Journal of Chemical Physics, vol. 95, no. 12, pp. 9009–9023, 1991.
[30]  E. F. van Dishoeck, M. C. van Hemert, and A. Dalgarno, “Photodissociation processes in the HCl molecule,” The Journal of Chemical Physics, vol. 77, no. 7, pp. 3693–3702, 1982.
[31]  Y. F. Zhu, E. R. Grant, K. Wang, V. McKoy, and H. Lefebvre-Brion, “Spin-orbit autoionization and intensities in the double-resonant delayed pulsed-field threshold photoionization of HCl,” The Journal of Chemical Physics, vol. 100, no. 12, pp. 8633–8640, 1994.
[32]  H. Lefebvre-Brion and F. Keller, “Competition between autoionization and predissociation in the HCl and DCl molecules,” The Journal of Chemical Physics, vol. 90, no. 12, pp. 7176–7183, 1989.
[33]  P. J. Bruna and S. D. Peyerimhoff, “Excited-state potentials,” in Ab Initio Methods in Quantum Chemistry, K. P. Lawley, Ed., John Wiley & Sons, New York, NY, USA, 1987.
[34]  R. Liyanage, R. J. Gordon, and R. W. Field, “Diabatic analysis of the electronic states of hydrogen chloride,” Journal of Chemical Physics, vol. 109, no. 19, pp. 8374–8387, 1998.
[35]  M. Bettendorff, S. D. Peyerimhoff, and R. J. Buenker, “Clarification of the assignment of the electronic spectrum of hydrogen chloride based on ab initio cl calculations,” Chemical Physics, vol. 66, no. 3, pp. 261–279, 1982.
[36]  L. Singleton and P. Brint, “Calculation of the Rydberg-state energies of HCl,” Journal of the Chemical Society, Faraday Transactions, vol. 93, no. 1, pp. 21–23, 1997.
[37]  Y. Li, O. Bludsky, G. Hirsch, and R. J. Buenker, “Ab initio configuration interaction study of the predissociation of the (4s), (4pσ) 1,3Π, and (4pπ) 3Σ+ Rydberg states of HCl and DCl,” Journal of Chemical Physics, vol. 112, no. 1, pp. 260–267, 2000.
[38]  J. Pitarch-Ruiz, A. Sánchez de Merás, J. Sánchez-Marín, A. M. Velasco, C. Lavín, and I. Martín, “Low-lying Rydberg states of HCl,” Journal of Physical Chemistry A, vol. 112, no. 14, pp. 3275–3280, 2008.
[39]  D. Song, K. Liu, F. A. Kong, J. Li, and Y. Mo, “Ion-Pair dissociation dynamics of HCl: fast predissociation,” Journal of Physical Chemistry A, vol. 113, no. 17, pp. 4919–4922, 2009.
[40]  G. Vazquez and H. Lefebvre-Brion, private communication.
[41]  H. Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules, Elsevier, Amsterdam, The Netherlands, 2004.
[42]  E. R. Davidson, “First excited state of the hydrogen molecule,” The Journal of Chemical Physics, vol. 35, pp. 1189–1202, 1961.
[43]  P. J. Hay and D. C. Cartwright, “Rydberg, ionic, and valence interactions in the excited states of F,” Chemical Physics Letters, vol. 41, no. 1, pp. 80–83, 1976.
[44]  S. D. Peyerimhoff and R. J. Buenker, “Electronically excited and ionized states of the chlorine molecule,” Chemical Physics, vol. 57, no. 3, pp. 279–296, 1981.
[45]  R. de Vivie and S. D. Peyerimhoff, “Theoretical spectroscopy of the NO radical. I. Potential curves and lifetimes of excited states,” The Journal of Chemical Physics, vol. 89, no. 5, pp. 3028–3043, 1988.
[46]  M. ?ukomski, J. Koperski, and M. Czajkowski, “Double-well potential energy curve of cadmium-krypton molecule in the B1(53P1) excited state,” Spectrochimica Acta A, vol. 58, no. 8, pp. 1757–1767, 2002.
[47]  E. Czuchaj, M. Kronicki, and H. Stoll, “Quasirelativistic valence ab initio calculation of the potential curves for the Zn-rare gas van der Waals molecules,” Chemical Physics, vol. 265, no. 3, pp. 291–299, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133