全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Studies on the ns-IR-Laser-Induced Plasma Parameters in the Vanadium Oxide

DOI: 10.1155/2011/504764

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report spectroscopic studies of laser-induced plasma (LIP) produced by ns-IR-Nd:YAG laser light pulses of different energies onto four different oxides of vanadium (VO, V2O3, VO2, and V2O5) in air under atmospheric pressure. For each oxide with a different oxidation state of vanadium, both electron density and plasma temperature were calculated for different time delays and laser pulse energies. The plasma temperature was determined from Boltzmann plot method, whereas the electron number density was estimated from the Saha equation. The decay rates for plasma temperature as well as electron density were observed to follow power law and were independent of the nature of vanadium oxide. These investigations provide an insight to optimize various parameters during LIBS analysis of vanadium-based matrices. 1. Introduction Laser-induced breakdown spectroscopy (LIBS) is an elemental analysis technique based on the excitation of atoms present on the sample surface, by focusing a pulsed laser beam. Material amounts ranging from ng to g are ablated in this process producing a microplasma which can be characterized by several of parameters. After the creation of the plasma, electromagnetic radiation is emitted as a consequence of several processes, namely, bremsstrahlung, recombination and de-excitation of atoms and ions occurring inside the plume [1]. De-excitation of atoms and ions leads to emission of light of characteristic frequency which can be used for both qualitative and quantitative determinations. LIBS has several attractive features like the ability to analyze nonconducting and conducting material in any phase (solids, gases, and liquids) as well as refractory materials which are difficult to digest or dissolve (ceramics, superconductors, etc.). The rapidness of analysis and multielemental analyzing capability make LIBS a highly useful technique for trace elemental determination. Several experimental parameters are reported to affect the LIBS analysis. These include the effect of laser wavelength [2], pulse energy [3], pulse duration and shape [4, 5], and the acquisition time delay. Cabalin and Laserna studied the effect of thermal property of material on threshold laser fluence variation [6]. The different phases of iron oxide were found to have different plasma characteristics [7]. To the best of our knowledge, the effect of different oxidation states of an element present in the sample on the plasma characteristics has not been reported. Theoretically, the information regarding laser-induced plasma (LIP) can be obtained by solving a complex

References

[1]  G. M. Weyl, “Physics of laser-induced breakdown: an update,” in Laser- Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, Eds., Marcel Dekker, New York, NY, USA, 1989.
[2]  C. Geertsen, A. Briand, F. Chartier et al., “Comparison between infrared and ultraviolet laser ablation at atmospheric pressure-implications for solid sampling inductively coupled plasma spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 9, no. 1, pp. 17–22, 1994.
[3]  M. A. Shannon, X. L. Mao, A. Fernandez, W. T. Chan, and R. E. Russo, “Laser ablation mass removal versus incident power density during solid sampling for inductively coupled plasma atomic emission spectroscopy,” Analytical Chemistry, vol. 67, no. 24, pp. 4522–4529, 1995.
[4]  M. Autin, A. Briand, P. Mauchien, and J. M. Mermet, “Characterization by emission spectrometry of a laser-produced plasma from a copper target in air at atmospheric pressure,” Spectrochimica Acta—Part B, vol. 48, no. 6-7, pp. 851–862, 1993.
[5]  B. C. Castle, K. Visser, B. W. Smith, and J. D. Winefordner, “Spatial and temporal dependence of lead emission in laser-induced breakdown spectroscopy,” Applied Spectroscopy, vol. 51, no. 7, pp. 1017–1024, 1997.
[6]  L. M. Cabalin and J. J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochimica Acta—Part B, vol. 53, no. 5, pp. 723–730, 1998.
[7]  S. Nasrazadani and H. Namduri, “Study of phase transformation in iron oxides using laser induced breakdown spectroscopy,” Spectrochimica Acta—Part B, vol. 61, no. 5, pp. 565–571, 2006.
[8]  R. S. Adrain and J. Watson, “Laser microspectral analysis: a review of principles and applications,” Journal of Physics D, vol. 17, no. 10, article 004, pp. 1915–1940, 1984.
[9]  H. R. Griem, Principles of Plasma Spectroscopy, Cambridge University Press, Cambridge, UK, 1997.
[10]  D. H. Lowndes, D. B. Geohegan, A. A. Puretzky, D. P. Norton, and C. M. Rouleau, “Synthesis of novel thin-film materials by pulsed laser deposition,” Science, vol. 273, no. 5277, pp. 898–903, 1996.
[11]  M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves, Wiley, NewYork, NY, USA, 1965.
[12]  T. Mochizuki, K. Hirata, H. Ninomiya et al., “Time-resolved electron density measurements in an ArF excimer laser discharge,” Optics Communications, vol. 72, no. 5, pp. 302–305, 1989.
[13]  S. M. Cameron, M. D. Tracy, and J. F. Camacho, “Electron density and temperature contour plots from a laser-produced plasma using collective ultraviolet Thomson scattering,” IEEE Transactions on Plasma Science, vol. 24, no. 1, pp. 45–46, 1996.
[14]  R. W. P. McWhirter, “Spectral intensities,” in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, Eds., Academic Press, 1965.
[15]  http://www.nist.gov/pml/data/asd.cfm.
[16]  I. V. Kityk, “Photoinduced non-linear optical diagnostic of interfaces,” Optics and Lasers in Engineering, vol. 35, no. 4, pp. 239–250, 2001.
[17]  W. Lochte-Holtgreven, Ed., Plasma Diagnostics, North-Holland, 1968.
[18]  N. M. Shaikh, B. Rashid, S. Hafeez, Y. Jamil, and M. A. Baig, “Measurement of electron density and temperature of a laser-induced zinc plasma,” Journal of Physics D, vol. 39, no. 7, pp. 1384–1391, 2006.
[19]  S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” Journal of Applied Physics, vol. 82, no. 5, pp. 2140–2146, 1997.
[20]  A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation,” Spectrochimica Acta—Part B, vol. 60, no. 9-10, pp. 1280–1307, 2005.
[21]  H. R. Griem, Plasma Spectroscopy, McGraw Hill, New York, NY, USA, 1964.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133