全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Silicon-Based Technology for Ligand-Receptor Molecular Identification

DOI: 10.1155/2012/948390

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the most important goals in the fields of biology and medicine is the possibility to dispose of efficient tools for the characterization of the extraordinary complexity of ligand-receptor interactions. To approach this theme, we explored the use of crystalline silicon (cSi) technology for the realization of a biotechnological device in which the ligand-receptor interactions are revealed by means of optical measurements. Here, we describe a chemical procedure for the functionalization of microwell etched on silicon wafers, and the subsequent anchoring of biological molecules like an antibody anti-A20 murine lymphoma cell line. The optical analysis of the interaction on the biochips between the bound biomolecule and their corresponding ligand indicated that the functionalized cSi is suitable for this application. 1. Introduction Circulating tumor cells (CTCs) are emerging as a powerful prognostic and predictive biomarker in several types of cancer, including breast, colon, and prostate. However, studies of CTCs in metastasis and further development of CTCs as a biomarker in cancer have been hampered by the low concentration of CTCs in peripheral blood and by the inherent difficulties to recover CTCs from blood of patients. For this reason, it is compelling to implement novel devices and procedures to improve isolation rate and in vitro expansion of CTCs. Moreover, the extraordinary complexity of ligand-receptor interaction limits our knowledge of the molecular mechanisms of tumorigenesis and is a major obstacle in developing cancer-specific therapeutic agents. Pioneer studies of protein complexes have revealed that a given protein can physically associate to tens (>200) of different proteins [1]. In the case of eukaryotic cells, 20,000 proteins or more may establish an extraordinary large number of functional interactions with cell receptors, making unrealistic a systematic approach where each ligand-receptor interaction is studied as a single network. To overcome these hurdles, we recently dedicated to a comprehensive analysis of ligand-receptor interactions in mammalian cells [2, 3] developing a novel biochip based on the chemical and optical properties of porous silicon [4] where the ligand-receptor interaction is transduced, at high levels of specificity and sensitivity, in an optical signal generated by change of pSI refractive index [5–7]. Here, we propose to develop a device based on crystalline silicon that combines analytic and preparative properties to improve speed and efficiency of isolation of CTCs from blood of patients affected by

References

[1]  A. C. Gavin, M. B?sche, R. Krause et al., “Functional organization of the yeast proteome by systematic analysis of protein complexes,” Nature, vol. 415, no. 6868, pp. 141–147, 2002.
[2]  G. Scala, X. Chen, W. Liu et al., “Selection of HIV-specific immunogenic epitopes by screening random peptide libraries with HIV-1-positive sera,” Journal of Immunology, vol. 162, no. 10, pp. 6155–6161, 1999.
[3]  P. De Berardinis, R. Sartorius, C. Fanutti, R. N. Perham, G. Del Pozzo, and J. Guardiola, “Phage display of peptide epitopes from HIV-1 elicits strong cytolytic responses,” Nature Biotechnology, vol. 18, no. 8, pp. 873–876, 2000.
[4]  L. De Stefano, L. Moretti, A. Lamberti et al., “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Transactions on Nanotechnology, vol. 3, no. 1, pp. 49–54, 2004.
[5]  L. De Stefano, L. Rotiroti, I. Rea et al., “Porous silicon-based optical biochips,” Journal of Optics A, vol. 8, no. 7, pp. S540–S544, 2006.
[6]  L. De Stefano, P. Arcari, A. Lamberti et al., “DNA optical detection based on porous silicon technology: from biosensors to biochips,” Sensors, vol. 7, no. 2, pp. 214–221, 2007.
[7]  E. De Tommasi, L. De Stefano, I. Rea et al., “Porous silicon based resonant mirrors for biochemical sensing,” Sensors, vol. 8, no. 10, pp. 6549–6556, 2008.
[8]  L. H. Glimcher, K. J. Kim, I. Green, and W. E. Paul, “Ia antigen-bearing B cell tumor lines can present protein antigen and alloantigen in a major histocompatibility complex-restricted fashion to antigen-reactive T cells,” Journal of Experimental Medicine, vol. 155, no. 2, pp. 445–459, 1982.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133