We assume the space-time foam picture in which the vacuum is filled with a gas of virtual wormholes. It is shown that virtual wormholes form a finite (of the Planckian order) value of the energy density of zero-point fluctuations. However such a huge value is compensated by the contribution of virtual wormholes to the mean curvature and the observed value of the cosmological constant is close to zero. A nonvanishing value appears due to the polarization of vacuum in external classical fields. In the early Universe some virtual wormholes may form actual ones. We show that in the case of actual wormholes vacuum polarization effects are negligible while their contribution to the mean curvature is apt to form the observed dark energy phenomenon. Using the contribution of wormholes to dark matter and dark energy we find estimates for characteristic parameters of the gas of wormholes. 1. Introduction As is well known modern astrophysics (and, even more generally, theoretical physics) faces two key problems. Those are the nature of dark matter and dark energy. Recall that more than 90% of matter of the Universe has a nonbaryonic dark (to say, mysterious) form, while lab experiments still show no evidence for the existence of such matter. Both dark components are intrinsically incorporated in the most successful CDM (Lambda cold dark matter) model which reproduces correctly properties of the Universe at very large scales (e.g., see [1] and references therein). We point out that CDM predicts also the presence of cusps in centers of galaxies [2] and a too large number of galaxy satellites. Therefore other models are proposed, for example, like axions [3], which may avoid these. To be successful such models should involve a periodic self-interaction and therefore require a fine tuning, while in general the presence of standard nonbaryonic particles cannot solve the problem of cusps. Indeed, if we admit the existence of a self-interaction in the dark matter component, or some coupling to baryonic matter (which should be sufficiently strong to remove cusps), then we completely change properties of the dark matter component at the moment of recombination and destroy all successful predictions at very large scales. Recall that both warm and self-interacting dark matter candidates are rejected by the observing spectrum [1]. In other words, the two key observational phenomena (cores of dark matter in centers of galaxies [4–6] and spectrum) give a very narrow gap for dark matter particles which seems to require attracting some exotic objects in addition to standard
References
[1]
J. R. Primack, “The nature of dark matter,” http://arxiv.org/abs/astro-ph/0112255.
[2]
J. Diemand, M. Zemp, B. Moore, J. Stadel, and M. Carollo, “Cusps in cold dark matter haloes,” Monthly Notices of the Royal Astronomical Society, vol. 364, no. 2, pp. 665–673, 2005.
[3]
E. W. Mielke and J. A. V. Vélez Pérez, “Axion condensate as a model for dark matter halos,” Physics Letters B, vol. 671, no. 1, pp. 174–178, 2009.
[4]
G. Gentile, P. Salucci, U. Klein, D. Vergani, and P. Kalberla, “The cored distribution of dark matter in spiral galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 351, no. 3, pp. 903–922, 2004.
[5]
D. T. F. Weldrake, W. J. G. de Blok, and F. Walter, “A high-resolution rotation curve of NGC 6822: a test-case for cold dark matter,” Monthly Notices of the Royal Astronomical Society, vol. 340, no. 1, pp. 12–28, 2003.
[6]
W. J. G. de Blok and A. Bosma, “High-resolution rotation curves of low surface brightness galaxies,” Astronomy and Astrophysics, vol. 385, pp. 816–846, 2002.
[7]
A. Kirillov and E. P. Savelova, “Density perturbations in a gas of wormholes,” Monthly Notices of the Royal Astronomical Society, vol. 412, no. 3, pp. 1710–1720, 2011.
[8]
P. Kanti, B. Kleihaus, and J. Kunz, “Stable Lorentzian wormholes in dilatonic Einstein-Gauss-Bonnet theory,” Physical Review D, vol. 85, no. 4, Article ID 044007, 2012.
[9]
A. A. Kirillov and E. P. Savelova, “Dark matter from a gas of wormholes,” Physics Letters B, vol. 660, no. 3, pp. 93–99, 2008.
[10]
A. G. Riess, A. V. Filippenko, P. Challis, et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, vol. 116, no. 3, p. 1009, 1998.
[11]
S. Perlmutter, G. Aldering, G. Goldhaber, et al., “Measurements of Ω and Λ from 42 high-redshift supernovae,” The Astrophysical Journal, vol. 517, no. 2, p. 565, 1999.
[12]
J. L. Tonry, B. P. Schmidt, B. Barris, et al., “Cosmological results from high-z supernovae,” The Astrophysical Journal, vol. 594, no. 1, p. 594, 2003.
[13]
N. W. Halverson, E. M. Leitch, C. Pryke, et al., “Degree angular scale interferometer first results: a measurement of the cosmic microwave background angular power spectrum,” The Astrophysical Journal, vol. 568, no. 1, p. 38, 2002.
[14]
C. B. Netterfield, P. A. R. Ade, J. J. Bock, et al., “A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background,” The Astrophysical Journal, vol. 571, no. 2, p. 604, 2002.
[15]
S. Coleman, “Why there is nothing rather than something: a theory of the cosmological constant,” Nuclear Physics B, vol. 310, no. 3-4, pp. 643–668, 1988.
[16]
I. Klebanov, L. Susskind, and T. Banks, “Wormholes and the cosmological constant,” Nuclear Physics B, vol. 317, no. 3, pp. 665–692, 1989.
[17]
S. W. Hawking, “Spacetime foam,” Nuclear Physics B, vol. 114, p. 349, 1978.
[18]
T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particles, Clarendon Press, Oxford, UK, 1984.
[19]
A. H. Taub, “Space-times with distribution valued curvature tensors,” Journal of Mathematical Physics, vol. 21, no. 6, pp. 1423–1431, 1980.
[20]
A. Shatsky, privite communications.
[21]
V. A. Fock, “Zur Theorie des Wasserstoffatoms,” Zeitschrift für Physik, vol. 98, no. 3-4, pp. 145–154, 1935.
[22]
E. P. Savelova, “Gas of wormholes in Euclidean quantum field theory,” http://arxiv.org/abs/1211.5106.
[23]
A. A. Kirillov and E. P. Savelova, “On the behavior of bosonic systems in the presence of topology fluctuations,” http://arxiv.org/abs/0808.2478.
[24]
A. A. Kirillov, “Violation of the Pauli principle and dimension of the Universe at very large distances,” Physics Letters B, vol. 555, no. 1-2, pp. 13–21, 2003.
[25]
A. A. Kirillov, “Dark matter, dark charge, and the fractal structure of the Universe,” Physics Letters B, vol. 535, no. 1–4, pp. 22–24, 2002.
[26]
J. Ambjorn, J. Jurkiewicz, and R. Loll, “The spectral dimension of the universe is scale dependent,” Physical Review Letters, vol. 95, no. 17, Article ID 171301, 4 pages, 2005.
[27]
E. Manrique, S. Rechenberger, and F. Saueressig, “Asymptotically safe Lorentzian gravity,” Physical Review Letters, vol. 106, no. 25, Article ID 251302, 4 pages, 2011.
[28]
J. Laiho and D. Coumbe, “Evidence for asymptotic safety from lattice quantum gravity,” Physical Review Letters, vol. 107, no. 16, Article ID 161301, 2011.
[29]
A. A. Kirillov and D. Turaev, “On modification of the Newton's law of gravity at very large distances,” Physics Letters B, vol. 532, no. 3-4, pp. 185–192, 2002.
[30]
A. A. Kirillov and D. Turaev, “The universal rotation curve of spiral galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 371, no. 1, pp. L31–L35, 2006.
[31]
A. A. Kirillov and D. Turaev, “Foam-like structure of the universe,” Physics Letters B, vol. 656, pp. 1–8, 2007.
[32]
A. A. Kirillov, “The nature of dark matter,” Physics Letters B, vol. 632, no. 4, pp. 453–462, 2006.
[33]
A. A. Kirillov and E. P. Savelova, “Astrophysical effects of space-time foam,” Gravitation and Cosmology, vol. 14, no. 3, pp. 256–261, 2008.
[34]
S. W. Hawking and N. Turok, “Open inflation without false vacua,” Physics Letters B, vol. 425, no. 1-2, pp. 25–32, 1998.
[35]
Z. C. Wu, “The cosmological constant is probably zero, and a proof is possibly right,” Physics Letters B, vol. 659, no. 5, pp. 891–893, 2008.
[36]
R. Garattini, “Entropy and the cosmological constant: a spacetime-foam approach,” Nuclear Physics B, vol. 88, no. 1–3, Article ID 991003, pp. 297–300, 2000.
[37]
M. Visser, Lorentzian Wormholes, Springer, New York, NY, USA, 1996.
[38]
A. A. Kirillov and E. P. Savelova, “Artificial wormhole,” http://arxiv.org/abs/1204.0351.
[39]
E. W. Mielke, “Knot wormholes in geometrodynamics?” General Relativity and Gravitation, vol. 8, no. 3, pp. 175–196, 1977.
[40]
E. B. Gliner, “Algebraic properties of the energy-momentum tensor and vacuum-like states of matter,” Journal of Experimental and Theoretical Physics, vol. 22, p. 378, 1966.
[41]
A. H. Guth, “Inflationary universe: a possible solution to the horizon and flatness problems,” Physical Review D, vol. 23, no. 2, pp. 347–356, 1981.
[42]
A. A. Linde, “A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems,” Physics Letters B, vol. 108, no. 6, pp. 389–393, 1982.