全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Classes of Charged Spheroidal Models

DOI: 10.1155/2013/539847

Full-Text   Cite this paper   Add to My Lib

Abstract:

New classes of exact solutions to the Einstein-Maxwell system is found in closed form by assuming that the hypersurface is spheroidal. This is achieved by choosing a particular form for the electric field intensity. A class of solution is found for all positive spheroidal parameter for a specific form of electric field intensity. In general, the condition of pressure isotropy reduces to a difference equation with variable, rational coefficients that can be solved. Consequently, an explicit solution in series form is found. By placing restrictions on the parameters, it is shown that the series terminates and there exist two classes of solutions in terms of elementary functions. These solutions contain the models found previously in the limit of vanishing charge. Solutions found are directly relating the spheroidal parameter and electric field intensity. Masses obtained are consistent with the previously reported experimental and theoretical studies describing strange stars. A physical analysis indicates that these models may be used to describe a charged sphere. 1. Introduction In recent years, there have been several investigations into the Einstein-Maxwell system of equations for static spherically symmetric gravitational fields with isotropic pressures in the presence of the electromagnetic field. In such study, regular interior spacetime is matched smoothly at the pressure free interface to the Reissner-Nordstrom exterior model. The models generated are useful to describe charged relativistic bodies with strong gravitational fields such as neutron stars. Gravitational collapse of a spherically symmetric distribution of matter to a point singularity may be avoided in the presence of electromagnetic field. In this situation, the gravitational attraction is counterbalanced by the repulsive Columbian force with the pressure gradient and, hence, charged fluids have a tendency to resist the gravitational collapse. This property persuades the researchers to work on charged perfect fluid distribution. Bonnor [1] has shown that charged dust solutions are expected to form a point like model of electron when its radius shrinks to zero. The presence of electromagnetic field affects the value of redshifts, luminosities, and maximum mass of a compact relativistic object (Ivanov [2], Sharma et al. [3]). Many exact solutions which satisfy the conditions for a physically acceptable charged relativistic sphere have been given by Ivanov [2], Thirukkanesh and Maharaj [4], and Gupta and Maurya [5], among others. Detailed studies of Sharma et al. [6] in cold compact

References

[1]  W. B. Bonnor, “The mass of a static charged sphere,” Zeitschrift für Physik, vol. 160, no. 1, pp. 59–65, 1960.
[2]  B. V. Ivanov, “Static charged perfect fluid spheres in general relativity,” Physical Review D, vol. 65, Article ID 104001, 17 pages, 2002.
[3]  R. Sharma, S. Mukherjee, and S. D. Maharaj, “General solution for a class of static charged spheres,” General Relativity and Gravitation, vol. 33, no. 6, pp. 999–1009, 2001.
[4]  S. Thirukkanesh and S. D. Maharaj, “Charged relativistic spheres with generalized potentials,” Mathematical Methods in the Applied Sciences, vol. 32, no. 6, pp. 684–701, 2009.
[5]  Y. K. Gupta and S. K. Maurya, “A class of regular and well behaved charge analogue of Kuchowicz’s relativistic super-dense star model,” Astrophysics and Space Science, vol. 332, no. 2, pp. 415–421, 2011.
[6]  R. Sharma, S. Karmakar, and S. Mukherjee, “Maximum mass of a cold compact star,” International Journal of Modern Physics D, vol. 15, pp. 405–418, 2006.
[7]  R. Sharma and S. Mukherjee, “Compact stars: a core-envelope model,” Modern Physics Letters A, vol. 17, p. 2535, 2002.
[8]  R. Sharma and S. Mukherjee, “Her X-1: a quark diquark star?” Modern Physics Letters A, vol. 16, p. 1049, 2001.
[9]  V. O. Thomas, B. S. Ratanpal, and P. C. Vinodkumar, “Core-envelope models of superdense star with anisotropic envelope,” International Journal of Modern Physics D, vol. 14, no. 1, pp. 85–96, 2005.
[10]  R. Tikekar and V. O. Thomas, “Relativistic fluid sphere on pseudo-spheroidal space-time,” Pramana, vol. 50, no. 2, pp. 95–103, 1998.
[11]  B. C. Paul and R. Tikekar, “A core-envelope model of compact stars,” Gravitation and Cosmology, vol. 11, pp. 244–248, 2005.
[12]  P. C. Vaidya and R. Tikekar, “Exact relativistic model for a superdense star,” Journal of Astrophysics and Astronomy, vol. 3, no. 3, pp. 325–334, 1982.
[13]  R. Tikekar, “Exact model for a relativistic star,” Journal of Mathematical Physics, vol. 31, no. 10, pp. 2454–2458, 1990.
[14]  S. D. Maharaj and P. G. L. Leach, “Exact solutions for the Tikekar superdense star,” Journal of Mathematical Physics, vol. 37, no. 1, pp. 430–437, 1996.
[15]  K. Komathiraj and S. D. Maharaj, “Tikekar superdense stars in electric fields,” Journal of Mathematical Physics, vol. 48, Article ID 042501, 12 pages, 2007.
[16]  L. K. Patel and S. K. Koppar, “A charged analogue of the Vaidya-Tikekar solution,” Australian Journal of Physics, vol. 40, pp. 441–447, 1987.
[17]  R. Tikekar and G. P. Singh, “Interior reissner-nordstrom metric on spheroidal space-times,” Gravitation and Cosmology, vol. 4, pp. 294–296, 1998.
[18]  Y. K. Gupta and M. Kumar, “On the general solution for a class of charged fluid spheres,” General Relativity and Gravitation, vol. 37, no. 1, pp. 233–236, 2005.
[19]  Y. K. Gupta, Pratibha, and S. R. Kumar, “Some nonconformal accelerating perfect fluid plates of embedding class 1 using similarity transformations,” International Journal of Modern Physics A, vol. 25, p. 1863, 2010.
[20]  Y. K. Gupta, Pratibha, and J. Kumar, “A new class of charged analogues of Vaidya–Tikekar type super-dense star,” Astrophysics and Space Science, vol. 333, no. 1, pp. 143–148, 2011.
[21]  N. Bijalwan and Y. K. Gupta, “Closed form Vaidya-Tikekar type charged fluid spheres with pressure,” Astrophysics and Space Science, vol. 334, pp. 293–299, 2011.
[22]  N. Bijalwan, “Exact solutions: neutral and charged static perfect fluids with pressure,” Astrophysics and Space Science, vol. 337, pp. 161–167, 2012.
[23]  J. Kumar and Y. K. Gupta, “A class of new solutions of generalized charged analogues of Buchdahl's type super-dense star,” Astrophysics and Space Science, vol. 345, pp. 331–337, 2013.
[24]  X.-D. Li, I. Bombaci, M. Dey, J. Dey, and E. P. J. van den Heuvel, “Is SAX J1808.4-3658 a strange star?” Physical Review Letters, vol. 83, no. 19, pp. 3776–3779, 1999.
[25]  M. Dey, I. Bombaci, J. Dey, S. Ray, and B. C. Samanta, “Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential,” Physics Letters B, vol. 438, no. 1-2, pp. 123–128, 1998.
[26]  R. Sharma and S. D. Maharaj, “A class of relativistic stars with a linear equation of state,” Monthly Notices of the Royal Astronomical Society, vol. 375, pp. 1265–1268, 2007.
[27]  R. Tikekar and K. Jotania, “On relativistic models of strange stars,” Pramana, vol. 68, no. 3, pp. 397–406, 2007.
[28]  C. Alcock, E. Farhi, and A. Olinto, “Strange stars,” The Astrophysical Journal, vol. 310, pp. 261–272, 1986.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133