全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Visual Brain, Perception, and Depiction of Animals in Rock Art

DOI: 10.1155/2013/342801

Full-Text   Cite this paper   Add to My Lib

Abstract:

Several aspects of the depiction of animals in rock art can be explained by certain perceptual correlates relating to the visual brain and evolutionary factors. Recent evidence from neuroscience and the visual brain not only corroborates this claim but provides important new findings that can help delineate which graphic features relate to biological/genetic criteria. In addition to highlighting how the insights from visual science and evolutionary studies can promote a greater understanding of the depictive strategies employed to portray animals, this paper will also explore ways in which the findings from these disciplines can be assimilated with semiotics that provide novel insights into the preference for depicting animals in a particular format over an extended period. The emphasis throughout is placed on dual-inheritance theory where culture and evolutionary determinants are seen as complementary. 1. Introduction It is becoming increasingly clear that the immense period during which animals were depicted in palaeoart, as well as their universality, is unable to be adequately accounted for by cultural factors [1–3]. The obvious similarity in the way animals were depicted across widely separated and divergent cultures suggests that the influence of more prevailing factors may be relevant. In this respect, animals can potentially be portrayed in a myriad of ways but were depicted in a relatively stereotyped fashion over long periods throughout the world. Moreover, recent research has shown cultural explanations need to be regarded with caution as it has been shown that spots applied to depicted Upper Palaeolithic horses, which were once believed to be shamanistic in origin, probably represent natural dapples [4, 5]. Moreover, the many distortions that typify depicted animal in rock art (see, e.g., Figure 1) can be reliably explained by perceptual and cognitive processes rather than cultural conventions [6]. These findings that provide further support to the notion Franco-Cantabrian depictions portrayed real animals produced by keen observers of fauna [2, 7–9]. Figure 1: Outline of a Rhinoceros from Chauvet Cave, France, up to 30,000-year old showing the sideways view in outline with prominent defining features exaggerated. The ears, however, appear to be based on a local convention. The necessity to rapidly detect and identify animals has consequences for understanding the preoccupation with animals and their portrayal in rock art. For example, this is predominantly in contour profile [2], which is a phenomenon that can be found in such diverse

References

[1]  J. Halverson, “The first pictures: perceptual foundations of Paleolithic art,” Perception, vol. 21, no. 3, pp. 389–404, 1992.
[2]  D. Hodgson, “The biological foundations of upper Palaeolithic art. Stimulus: percept and representational imperatives,” Rock Art Research, vol. 20, no. 1, pp. 3–22, 2003.
[3]  D. Hodgson and P. A. Helvenston, “The emergence of the representation of animals in Palaeoart: insights from evolution and the cognitive, limbic and visual systems of the human brain,” Rock Art Research, vol. 23, no. 1, pp. 3–40, 2006.
[4]  M. Pruvost, R. Bellone, N. Benecke et al., “Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 46, pp. 18626–18630, 2011.
[5]  G. Bar-Oz and S. Lev-Yadun, “Lev-Yadun, Paleolithic cave rock art, animal coloration, and specific animal habitats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 20, Article ID E1213, 2012.
[6]  J. A. Cheyne, L. Meschino, and D. Smilek, “Caricature and contrast in the upper palaeolithic: morphometric evidence from cave art,” Perception, vol. 38, no. 1, pp. 100–108, 2009.
[7]  R. D. Guthrie, “Ethologicial observations from Palaeolithic art,” in La contribution de la zoologie et de l’ethologie à l’interpretation de l’art des peuples chasseurs préhistoriqùes, H. Bandi, W. Huber, M. R. Sauter, and S. Bitter, Eds., 3e Colloque de la Société Suisse des Sciences Humaines, pp. 35–74, éditions Universitaires Fribourg, Fribourg, Switzerland, 1974.
[8]  S. C. Hudson, “The hunter’s eye: visual perception and Palaeolithic art,” Archaeological Review from Cambridge, vol. 15, no. 1, pp. 95–109, 1998.
[9]  D. Hodgson, “Seeing the “unseen”: fragmented cues and the implicit in palaeolithic art,” Cambridge Archaeological Journal, vol. 13, no. 1, pp. 97–106, 2003.
[10]  P. S. C. Ta?on, L. Gang, Y. Decong et al., “Naturalism, nature and questions of style in Jinsha River Rock Art, Northwest Yunnan, China,” Cambridge Archaeological Journal, vol. 20, no. 1, pp. 67–86, 2010.
[11]  T. Troscianko, C. P. Benton, P. G. Lovell, D. J. Tolhurst, and Z. Pizlo, “Camouflage and visual perception,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1516, pp. 449–461, 2009.
[12]  Z. Pizlo, 3D Shape: Its Unique Place in Visual Perception, MIT Press, Cambridge, Mass, USA, 2008.
[13]  A. Caramazza and J. R. Shelton, “Domain-specific knowledge systems in the brain: the animate-inanimate distinction,” Journal of Cognitive Neuroscience, vol. 10, no. 1, pp. 1–34, 1998.
[14]  A. Caramazza and B. Z. Mahon, “The organization of conceptual knowledge: the evidence from category-specific semantic deficits,” Trends in Cognitive Sciences, vol. 7, no. 8, pp. 354–361, 2003.
[15]  B. Z. Mahon and A. Caramazza, “Concepts and categories: a cognitive neuropsychological perspective,” Annual Review of Psychology, vol. 60, pp. 27–51, 2009.
[16]  P. A. Chouinard and M. A. Goodale, “Category-specific neural processing for naming pictures of animals and naming pictures of tools: an ALE meta-analysis,” Neuropsychologia, vol. 48, no. 2, pp. 409–418, 2010.
[17]  J. New, L. Cosmides, and J. Tooby, “Category-specific attention for animals reflects ancestral priorities, not expertise,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 42, pp. 16598–16603, 2007.
[18]  B. A. Purdy, K. S. Jones, J. J. Mecholsky, et al., “Earliest art in the Americas: incised image of a proboscidean on a mineralized extinct animal bone from Vero Beach, Florida,” Journal of Archaeological Science, vol. 38, no. 11, pp. 2908–2913, 2011.
[19]  D. Huyge, M. Aubert, H. Barnard, et al., “Lascaux along the Nile: late pleistocene rock art in Egypt,” Antiquity, vol. 81, no. 313, 2007, http://antiquity.ac.uk/ProjGall/huyge/index.html.
[20]  S. J. Mithen, “Looking and learning: upper Palaeolithic art and information gathering,” World Archaeology, vol. 19, no. 3, pp. 297–327, 1988.
[21]  J. H. Elder and L. Velisavljevi?, “Cue dynamics underlying rapid detection of animals in natural scenes,” Journal of Vision, vol. 9, no. 7, article 7, 2009.
[22]  M. J. M. Macé, A. Delorme, G. Richard, and M. Fabre-Thorpe, “Spotting animals in natural scenes: efficiency of humans and monkeys at very low contrasts,” Animal Cognition, vol. 13, no. 3, pp. 405–418, 2010.
[23]  S. E. Palmer, E. Rosch, and P. Chase, “Canonical perspective and the perception of objects,” in Attention and Performance IX, J. Long and A. Baddeley, Eds., pp. 135–151, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1981.
[24]  V. Blanz, M. J. Tarr, and H. H. Bülthoff, “What object attributes determine canonical views?” Perception, vol. 28, no. 5, pp. 575–599, 1999.
[25]  A. Delorme, G. Richard, and M. Fabre-Thorpe, “Key visual features for rapid categorization of animals in natural scenes,” Frontiers of Psychology, vol. 1, no. 21, pp. 1–13, 2010.
[26]  J. Pearson, C. W. G. Clifford, and F. Tong, “The functional impact of mental imagery on conscious perception,” Current Biology, vol. 18, no. 13, pp. 982–986, 2008.
[27]  J. M. Kennedy and J. Silver, “The surrogate functions of lines in visual perception: evidence from antipodal rock and cave artwork sources,” Perception, vol. 3, no. 3, pp. 313–322, 1974.
[28]  D. B. Walther, B. Chai, E. Caddigan, D. M. Beck, and L. Fei-Fei, “Simple line drawings suffice for functional MRI decoding of natural scene categories,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 23, pp. 9661–9666, 2011.
[29]  C. S. Peirce, Collected Writings, Harvard University Press, Cambridge, Mass, USA, 1974.
[30]  T. A. Sebeok, “Indexicality,” in Peirce and Contemporary Thought: Philosophical Inquirie, K. L. Ketner, Ed., pp. 222–242, Fordham University Press, New York, NY, USA, 1995.
[31]  K. Kull, “The architect of biosemiotics: Thomas A. Sebeok and biology,” in Semiotics Continues To Astonish: Thomas A. Sebeok and the Doctrine of Signs, P. Cobley, J. Deely, K. Kull, and S. Petrilli, Eds., pp. 233–250, De Grutyer Mouton, Berlin, Germany, 2011.
[32]  W. N?th, “Semiotic foundations of iconicity in language and literature,” in The Motivated Sign: Iconicity in Language and Literature 2, O. Fischer and M. N?nny, Eds., pp. 17–28, Benjamins, Philadelphia, Pa, USA, 2001.
[33]  J. A. Cheyne, “Signs of Consciousness: Speculation on the Psychology of Palaeolithic Graphics (Part ll),” 1993, http://watarts.uwaterloo.ca/~acheyne/signcon2.html.
[34]  W. N?th, “Semiotics for Biologists,” in Biosemiotics: Information, Codes and Signs in Living Systems, M. Barbieri, Ed., pp. 141–153, Nova Science, New York, NY, USA, 2007.
[35]  J. J. Yang, M. Francis, P. S. F. Bellgowan, and A. Martin, “Object concepts and the human amygdala: enhanced activity for identifying animals independent of in-put modality and stimulus format,” in Proceedings of the 12th Annual Meeting of the Cognitive Neuroscience Society, New York, NY, USA, 2005.
[36]  A. S. Heberlein and R. Adolphs, “Impaired spontaneous anthropomorphizing despite intact perception and social knowledge,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 19, pp. 7487–7491, 2004.
[37]  D. Hodgson, “Altered States of consciousness and palaeoart: an alternative neurovisual explanation,” Cambridge Archaeological Journal, vol. 16, no. 1, pp. 27–37, 2006.
[38]  L. S. Barham, “Systematic pigment use in the middle pleistocene of South-Central Africa,” Current Anthropology, vol. 43, no. 1, pp. 181–190, 2002.
[39]  J. Clottes, “Return to Chauvet cave,” in Excavating the Birthplace of Art: the First Full Report, Thames and Hudson, London, UK, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133