全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Contribution of Ion-Exchange and Non-Ion-Exchange Reactions to Sorption of Ammonium Ions by Natural and Activated Aluminosilicate Sorbent

DOI: 10.1155/2013/789410

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effect of acid and alkaline activation of complex natural aluminosilicate sorbent on its chemical composition, surface properties, and adsorption capacity towards ammonium ions was studied. An increase in specific surface area of the sorbent by 1.3 times after acid treatment and by 1.5 times after alkaline activation was shown. The change of ion-exchange complex of sorbent as a result of activation was observed. Sorption isotherms of ammonium ions on natural and activated samples were obtained and were satisfactorily described by the Langmuir equation. The evaluation and comparison of desorbed cations of alkali and alkaline earth metals were carried out. It was confirmed that ion-exchange processes primarily contributed to sorption of ammonium ions by natural and acid-activated silica-alumina, in contrast to alkali-activated one, for which absorption of nonexchangeable ammonium ions increased adsorption capacity of ammonium ions by 1.5 times. 1. Introduction Use of natural aluminosilicates in sorption purification processes [1, 2] and catalytic conversion of various substances [3] is currently receiving increasing interest due to their unique properties already available in their natural state, as well as new properties acquired during modifying and activation of aluminosilicates [4]. Natural aluminosilicates have good adsorption and ion-exchange properties; they widely occur in nature and have low cost. The structure of these materials can be represented by a variety of components, for example, a layered clayey (montmorillonite), a framework zeolite structure (clinoptilolite), and so forth. Usually montmorillonite and clinoptilolite containing clays are activated by various methods of treatment, such as thermal treatment [5], ion exchange [6, 7], and treatment with acids [8, 9] and alkali [10, 11]. By activation the chemical composition of minerals is selectively modified that results in an increase in specific surface area, specific pore surface and thermostability, changes in the surface pH, and so forth. Currently, montmorillonite minerals are often modified in such processes as grafting [12], silylation [13], and intercalation [14, 15] due to inclined swelling capacity. At the same time, the materials based on natural zeolites are valuable as catalysts and supports owing to their rigid frame structure. Due to specificity of crystal structure and chemical composition, montmorillonite and clinoptilolite reveal high ability to ion-exchange reactions of movable cations of Ca2+, Mg2+, Na+, and K+, which mostly equivalently contribute to adsorption

References

[1]  R. M. Nageeb, “Adsorption technique for the removal of organic pollutants from water and wastewater,” in Organic Pollutants—Monitoring, Risk and Treatment, M. N. Rashed, Ed., chapter 7, p. 229, InTech, Rijeka, Croatia, 2013.
[2]  M. Rozic and ?. Cerjan-Stefanovic, “Croatian clinoptilolite- and montmorillonite-rich tuffs for ammonium removal,” in Zeolites and Mesoporous Materials at the Dawn of the 21st Century, vol. 135 of Studies in Surface Science and Catalysis, pp. 5195–5202, 2001.
[3]  D. Manikandan, R. V. Mangalaraja, S. Ananthakumar, and T. Sivakumar, “Synthesis of metal intercalated clay catalysts for selective hydrogenation reactions,” Catalysis in Industry, vol. 4, no. 4, pp. 215–203, 2012.
[4]  S. Morfis, C. Philippopoulos, and N. Papayannakos, “Application of Al-pillared clay minerals as catalytic carriers for the reaction of NO with CO,” Applied Clay Science, vol. 13, no. 3, pp. 203–212, 1998.
[5]  M. A. Osman, M. I. Ploetze, and U. W. Suter, “Surface treatment of clay minerals—thermal stability, basal-plane spacing and surface coverage,” Journal of Materials Chemistry, vol. 13, no. 9, pp. 2359–2366, 2003.
[6]  A. Moronta, J. Luengo, Y. Ramírez, J. Qui?ónez, E. González, and J. Sánchez, “Isomerization of cis-2-butene and trans-2-butene catalyzed by acid- and ion-exchanged smectite-type clays,” Applied Clay Science, vol. 29, no. 2, pp. 117–123, 2005.
[7]  A. Neaman, M. Pelletier, and F. Villieras, “The effects of exchanged cation, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite,” Applied Clay Science, vol. 22, no. 4, pp. 153–168, 2003.
[8]  M. Sprynskyy, M. Lebedynets, R. Zbytniewski, J. Namie?nik, and B. Buszewski, “Ammonium removal from aqueous solution by natural zeolite, transcarpathian mordenite, kinetics, equilibrium and column tests,” Separation and Purification Technology, vol. 46, no. 3, pp. 155–160, 2005.
[9]  L. A. Novikova, L. I. Bel'chinskaya, and F. Roessner, “Effect of treatment with acids on the state of the surface of natural clay minerals,” Russian Journal of Physical Chemistry A, vol. 80, supplement 1, pp. S185–S188, 2006.
[10]  G. Jozefaciuk and D. Matyka-Sarzynska, “Effect of acid treatment and alkali treatment on nanopore properties of selected minerals,” Clays and Clay Minerals, vol. 54, no. 2, pp. 220–229, 2006.
[11]  B. ?ztop and T. Shahwan, “Modification of a montmorillonite-illite clay using alkaline hydrothermal treatment and its application for the removal of aqueous Cs+ ions,” Journal of Colloid and Interface Science, vol. 295, no. 2, pp. 303–309, 2006.
[12]  P. Liu, “Polymer modified clay minerals: a review,” Applied Clay Science, vol. 38, no. 1-2, pp. 64–76, 2007.
[13]  H. He, Q. Tao, J. Zhu, P. Yuan, W. Shen, and S. Yang, “Silylation of clay mineral surfaces,” Applied Clay Science, vol. 71, pp. 15–20, 2013.
[14]  G. Lagaly and K. Beneke, “Intercalation and exchange reactions of clay minerals and non-clay layer compounds,” Colloid and Polymer Science, vol. 269, no. 12, pp. 1198–1211, 1991.
[15]  T. J. Pinnavaia, “Intercalated clay catalysts,” Science, vol. 220, no. 4595, pp. 365–371, 1983.
[16]  N. A. Khodosova, L. I. Belchinskaya, G. A. Petukhova, and O. V. Voishcheva, “Adsorption of formaldehyde from gaseous phase by thermally activated nanoporous celite,” Protection of Metals and Physical Chemistry of Surfaces, vol. 46, no. 1, pp. 90–95, 2010.
[17]  L. I. Belchinskaya, L. A. Novikova, and F. Roessner, “Adsorption of acetic acid on natural and alkali activated montmorillonite,” Sorption and Chromatographic Processes, vol. 7, no. 5, pp. 741–745, 2007.
[18]  V. I. Bogdanova, Ion-Exchange Capacity Determination of Zeolite Containing Rock by Total Exchange Cations Being Replaced, Instruction No. 25, RF Committee for Geology and the Use of Subsurface Resources, NSOMMI, Novosibirsk, Russia, 1993.
[19]  E. M. Katorgina, A. T. Kynin, A. A. Lysenko, and M. V. Teploukhova, Methodological Instructive Regulations on Performing Education Research Work on Physical and Colloidal Chemistry, 1995.
[20]  V. F. Selemenev, Practical Guide to Ion-Exchange, Publishing House of Voronezh State University, Voronezh, Russia, 2004.
[21]  Yu. I. Tarasevich, Structure and the Surface Chemistry of Laminar Silicates, Naukova Dumka, Kiev, Ukraine, 1988.
[22]  O. M. Mdivnishvili, Crystallochemical Foundations of Controlling the Properties of Natural Sorbents, Metsniereba, Tbilisi, Georgia, 1978.
[23]  N. F. Chelishchev, V. F. Volodin, and V. L. Kryukov, Ion Exchange Properties of Natural High Silica Zeolites, Nauka, Moscow, Russia, 1988 (Russian).
[24]  L. I. Belchinskaya, O. V. Voishcheva, G. A. Petukhova, L. T. Jen, V. Yu. Khokhlov, and V. F. Selemenev, “Influence of acid treatment on adsorption and structural properties of natural mineral sorbent M45C20,” Proceedings of Russian Academy of Sciences, Chemical Bulletin, no. 9, pp. 1789–1795, 2011.
[25]  V. S. Komarov, Production, Structure and Properties of Adsorbents, Belaruskaya Navuka, Minsk, Belarus, 2009.
[26]  D. Brek, Zeolite Molecular Sieves, Mir Publishers, Moscow, Russia, 1976.
[27]  T. A. Armbuster, “Dehydration mechanism of clinoptilolite and heulandites,” The American Mineralogist, vol. 78, pp. 260–265, 1993.
[28]  M. L. Nguyen and C. C. Tanner, “Ammonium removal from wastewaters using natural New Zealand zeolites,” New Zealand Journal of Agricultural Research, vol. 41, no. 3, pp. 427–446, 1998.
[29]  A. I. Vesentsev, S. V. Korol’kova, and N. A. Volovicheva, “Determination of kinetic laws of Cu2+ sorption by native and Mg-substituted formes of montmorillonite clays,” Sorbtsionnye i Khromatographicheskie Prozessy, vol. 10, no. 1, pp. 115–119, 2010.
[30]  B. Lombardi, M. Baschini, and R. M. T. Sánchez, “Characterization of montmorillonites from bentonite deposits of North Patagonia, Argentina: physicochemical and structural parameter correlation,” The Journal of Argentine Chemical Society, vol. 90, no. 4–6, pp. 87–99, 2002.
[31]  S. Greg and K. Sing, Adsorption, Specific Area, Porosity, Mir Publishers, Moscow, Russia, 1984.
[32]  I. A. Kirovskaya, Adsorption Processes, Publishing house of ISU, Irkutsk, Russia, 1995.
[33]  E. H. Teunissen, A. P. J. Jansen, and R. A. van Santen, “Ab initio embedded cluster study of the adsorption of NH3 and NH4+ in chabazite,” Journal of Physical Chemistry, vol. 99, no. 7, pp. 1873–1879, 1995.
[34]  S. P. Jdannov, S. S. Khvoschev, and N. N. Samulevich, Synthetic Zeolites, Khimiya, Moscow, Russia, 1981.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133