Organotin complexes of the types Ph3SnL and Bu2SnL [where Ph?=?phenyl and Bu?=?butyl; HL?=?1-phenyl-2,5-dithiohydrazodicarbonamide (HPhthc), 1-benzyl-2,5-dithiohydrazodicarbonamide (Hbzthc), 1-(4-ethoxyphenyl)-2,5-dithiohydrazodicarbonamide (HEtOPhthc)] have been prepared. Molar conductance studies demonstrate the nonionic behavior of the complexes. The 1H and 13C nuclear magnetic resonance and FAB mass spectra of the complexes are consistent with the proposed stoichiometry. Infrared spectra suggest an anionic bidentate coordinating behavior of the ligands. 1. Introduction Dithiohydrazodicarbonamides have proved to be compounds of versatile behavior. This particular ligand system and its 3d metal complexes have been shown to possess high antimicrobial activity [1, 2]. Anticorrosion properties of these ligands have also been recognized for the corrosion of copper in aqueous chloride solutions [3]. Some 1-aryl-2,5-dithiohydrazodicarbonamides and their molybdenum and tungsten complexes have been found to act as excellent extreme-pressure lubrication additives [4] and corrosion inhibitors for mild steel in 1.0?N sulfuric acid [5]. Biocidal activity of organotins is well recognized [6–8]. These have been enormously used as antifouling paints [9, 10]. Organotins derived from carboxylic acid, phosphoric group, N, S donating groups have been studied as corrosion inhibitors [11–22]. Organotins are known for their friction and wear reducing properties [23–25]. Organotin derivatives of alkylphenols have been successfully used as antiwear additives for lubricating oils [26]. Since organotins and dithiohydrazodicarbonamides both are well known for their biocidal behavior, friction and wear reducing properties and anticorrosive properties, synthesis of organotin complexes with dithiohydrazodicarbonamides was undertaken with intent to explore their applicability as corrosion inhibitors. The present communication, therefore, describes the synthesis of some triphenyltin and dibutyltin dithiohydrazodicarbonamides and their characterization by infrared, proton, and 13C nuclear magnetic resonance spectroscopy and FAB mass spectrometry. 2. Experimental 2.1. Materials Analytical grade reagents were used in the present investigation. The ligands were prepared by refluxing thiosemicarbazide with appropriate aryl isothiocyanates in 50% ethanol using previously reported methods [27]. In a representative experiment 1-phenyl-2,5-dithiohydrazodicarbonamide was synthesized as given below. Thiosemicarbazide (0.05?moL) and phenyl isothiocyanate (0.05?moL) were mixed with 50?mL of 50%
References
[1]
S. Prasad, A. Bhattacharya, V. K. Verma, S. Jayanti, and D. C. Rupainwar, “Synthetic and biocidal studies on the complexes of 1-aryl-2,5-dithiohydrazodicarbonamide with Co(II), Cu(II), and Zn(II),” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 22, no. 5, pp. 489–507, 1992.
[2]
K. S. Prasad, L. S. Kumar, M. Prasad, and H. D. Revanasiddappa, “Novel organotin(IV)-Schiff base complexes: synthesis, characterization, antimicrobial activity, and DNA interaction studies,” Bioinorganic Chemistry and Applications, vol. 2010, Article ID 854514, 9 pages, 2010.
[3]
M. M. Singh, R. B. Rastogi, B. N. Upadhyay, and M. Yadav, “Thiosemicarbazide, phenyl isothiocyanate and their condensation product as corrosion inhibitors of copper in aqueous chloride solutions,” Materials Chemistry and Physics, vol. 80, no. 1, pp. 283–293, 2003.
[4]
R. B. Rastogi, M. Yadav, and A. Bhattacharya, “Application of molybdenum complexes of 1-aryl-2,5-dithiohydrazodicarbonamides as extreme pressure lubricant additives,” Wear, vol. 252, no. 9-10, pp. 686–692, 2002.
[5]
R. B. Rastogi, M. M. Singh, and M. Yadav, “Inhibition of corrosion of mild steel by 1-aryl-2,5-dithiohydrazodicarbonamides and their molybdenum and tungsten complexes in 0.1?N sulphuric acid,” Bulletin of Electrochemistry, vol. 20, pp. 19–24, 2004.
[6]
A. Bacchi, M. Carcell, and P. Petagatti, “Antimicrobial and mutagenic properties of organotin(IV) complexes with isatin and N-alkylisatin bisthiocarbonohydrazones,” Journal of Inorganic Biochemistry, vol. 99, no. 2, pp. 397–408, 2005.
[7]
C. Pellerito, L. Nagy, L. Pellerito, and A. Szorcsik, “Biological activity studies on organotin(IV)n+ complexes and parent compounds,” Journal of Organometallic Chemistry, vol. 691, no. 8, pp. 1733–1747, 2006.
[8]
Z. U. Rehman, N. Muhammad, and S. Schuja, “New dimeric, trimeric and supramolecular organotin(IV) dithiocarboxylates: synthesis, structural characterization and biocidal activities,” Polyhedron, vol. 28, no. 16, pp. 3439–3448, 2009.
[9]
O. S. Ayanda, O. S. Fatoki, F. A. Adekola, and B. J. Ximba, “Fate and remediation of organotin compounds in seawaters and soils,” Chemical Science Transactions, vol. 1, no. 3, pp. 470–481, 2012.
[10]
S. Sadiq-ur-Rehman, S. Ali, S. Shahzadi, A. Malik, and E. Ahmed, “Synthesis, characterization, and biocidal studies of the newly synthesized di- and triorganotin(IV) complexes with n-butylhydrogen phthalate,” Turkish Journal of Chemistry, vol. 31, no. 3, pp. 371–387, 2007.
[11]
R. N. Singh and V. B. Singh, “Corrosion behavior and inhibitive effects of organotin compounds on nickel in formic acid,” Corrosion, vol. 49, no. 7, pp. 569–575, 1993.
[12]
R. N. Singh and V. B. Singh, “Organo-tin compounds as corrosion inhibitor for nickel in acetic acid solution,” Materials Transactions—The Japan Institute of Metals, vol. 38, pp. 49–53, 1997.
[13]
A. K. Sawyer, Organotin Compounds, vol. 3, Marcel Dekker, New York, NY, USA, 1971.
[14]
R. B. Rastogi, M. M. Singh, K. Singh, and M. Yadav, “Organotin dithiobiurets as corrosion inhibitors for mild steel-dimethyl sulfoxide containing HCl,” African Journal of Pure and Applied Chemistry, vol. 5, no. 2, pp. 19–33, 2011.
[15]
R. B. Rastogi, M. M. Singh, K. Singh, and J. L. Maurya, “Electrochemical behavior of mild steel in dimethyl sulfoxide containing hydrochloric acid,” Portugaliae Electrochimica Acta, vol. 28, no. 6, pp. 359–371, 2010.
[16]
R. B. Rastogi, M. N. Singh, K. Singh, and J. L. Maurya, “Studies on corrosion inhibiting properties of organotin thiobiurets for mild steel dimethyl sulphoxide containing HCl,” Bulletin of Electrochemistry, vol. 22, no. 8-9, pp. 355–361, 2006.
[17]
R. B. Rastogi, M. M. Singh, K. Singh, and M. Yadav, “Organotin dithiohydrazodicarbonamides as corrosion inhibitors for mild steel-dimethyl sulphoxide containing HCl,” Portugaliae Electrochimica Acta, vol. 22, no. 2, pp. 315–332, 2005.
[18]
V. K. Jain, “The chemistry and applications of organotin(IV) complexes of phosphorus-based acids,” Coordination Chemistry Reviews, vol. 135-136, pp. 809–843, 1994.
[19]
R. B. Rastogi and M. Yadav, “Synthesis of some molybdenum(V) and tungsten(V) complexes of 1-aryl-2,5-dithiohydrazodicarbonamides,” Journal of the Indian Chemical Society, vol. 82, pp. 448–451, 2005.
[20]
R. B. Rastogi, K. Singh, and J. L. Maurya, “Synthesis and characterization of organotin(IV) thiobiurets,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 42, no. 4, pp. 616–620, 2012.
[21]
R. B. Rastogi, K. Singh, and J. L. Maurya, “Synthesis and characterization of organotin(IV) dithiobiurets,” The IUP Journal of Chemistry, vol. 4, no. 3, pp. 7–19, 2011.
[22]
R. Singh, P. Chaudhary, and N. K. Kaushik, “A review: organotin compounds in corrosion inhibition,” Reviews in Inorganic Chemistry, vol. 30, no. 4, pp. 275–294, 2010.
[23]
Y. Junbin and D. J. Xiu, “Tribocatalysis reaction during antiwear synergism between borates and Sn(IV) compounds in boundary lubrication,” Tribology International, vol. 29, no. 5, pp. 429–432, 1996.
[24]
V. L. Lashkhi, O. N. Tsvetkov, F. N. Ermolov et al., “Organotin derivatives of alkylphenols as antiwear additives for lubricating oils,” Khimiya i Tekhnologiya Topliv i Masel, no. 4, pp. 54–57, 1977.
[25]
R. D. Liu, D. H. Tao, and S. F. Fu, “A study of the tribological behaviour of an organotin compound,” Lubrication Science, vol. 17, no. 4, pp. 419–429, 2006.
[26]
Y. Junbin, “The antiwear synergism between an organotin compound and a ZnDDP,” Lubrication Science, vol. 14, no. 3, pp. 377–381, 2002.
[27]
V. A. I. Vogel, A Textbook of Quantitative Inorganic Analysis, ELBS, Longman, London, UK, 1978.
[28]
T. N. Srivastava, V. Kumar, and R. B. Rastogi, “Some diorganotin dithiocarbamates,” Journal of Inorganic and Nuclear Chemistry, vol. 40, no. 3, pp. 399–401, 1978.
[29]
W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, no. 1, pp. 81–122, 1971.