全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Species Classification and Quality Assessment of Cangzhu (Atractylodis Rhizoma) by High-Performance Liquid Chromatography and Chemometric Methods

DOI: 10.1155/2013/497532

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fast and sensitive high-performance liquid chromatography (HPLC) coupled with chemometric methods was utilized to assist in the quality assessment of Cangzhu (Atractylodis Rhizoma). By comparative analysis of chromatographic profiles, twelve common peaks were selected for multivariate analysis. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the chromatographic data demonstrated that 16 batches of Cangzhu samples could be welldifferentiated and categorized into two groups, which were closely related to their species (Atractylodes chinensis and A. lancea). By loading plots of PCA and OPLS-DA, the “common peaks” 2, 10, and 12 were defined as “marker peaks,” which were identified as atractylodinol, (4E,6E,12E)-tetradecatriene-8,10-diyne-1,3-diyl diacetate, and atractylodin, respectively. These three “marker peaks” were then simultaneously quantified for further controlling the quality of Cangzhu, which showed acceptable linearity, both intraday and interday precisions (RSD ≤ 2.30%), repeatability (RSD ≤ 2.82%), and the recoveries of the three analytes in the range of 96.57–100.16%, with RSDs less than 1.46%. Finally, linear discriminant analysis (LDA) was successfully used to build predictive models of the group membership based on the contents of three marker peaks. Results of the present study demonstrated that HPLC-based metabolic profiling coupled with chemometric methods and quantificational determination was a very flexible, reliable, and effective way for homogeneity evaluation and quality assessment of traditional Chinese medicine. 1. Introduction Chromatographic fingerprint has been approved to be an effective approach for the comprehensive quality control of traditional Chinese medicines (TCMs) and has been accepted for a long time by WHO [1, 2]. Except for this technique, metabolic profiling based on hyphenated technique, such as liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and liquid chromatography-nuclear magnetic resonance, has showed much more powerful capabilities coupled with multivariate analysis [3]. However, the expensive instruments and highly specialized processes of a hyphenated technique do not fit well for the routine work of quality control for TCMs. Some reports have demonstrated that high-performance liquid chromatography coupled with ultraviolet detectors (HPLC-UV) based metabolic profiling was an effective strategy for the quality assessment of TCMs [2, 4]. This strategy has shown early promise to be suitable for the quality

References

[1]  Y. G. Xia, B. Y. Yang, Q. H. Wang et al., “Quantitative analysis and chromatographic fingerprinting for the quality evaluation of Forsythia suspensa extract by HPLC coupled with photodiode array detector,” Journal of Separation Science, vol. 32, no. 23-24, pp. 4113–4125, 2009.
[2]  Z. Wang, H. Hu, F. Chen et al., “Metabolic profiling assisted quality assessment of Rhodiola rosea extracts by high-performance liquid chromatography,” Planta Medica, vol. 78, pp. 740–746, 2012.
[3]  E.-H. Liu, L.-W. Qi, K. Li, C. Chu, and P. Li, “Recent advances in quality control of traditional Chinese medicines,” Combinatorial Chemistry and High Throughput Screening, vol. 13, no. 10, pp. 869–884, 2010.
[4]  K. Lan, Y. Zhang, J. Yang, and L. Xu, “Simple quality assessment approach for herbal extracts using high performance liquid chromatography-UV based metabolomics platform,” Journal of Chromatography A, vol. 1217, no. 8, pp. 1414–1418, 2010.
[5]  Tropicos. Missouri Botanical Garden, http://www.tropicos.org/NameSearch.aspx.
[6]  State Pharmacopoeia Committee, Pharmacopoeia of People’s Republic of China (2010 version), 2010.
[7]  F.-Q. Guo, L.-F. Huang, S.-Y. Zhou, T.-M. Zhang, and Y.-Z. Liang, “Comparison of the volatile compounds of Atractylodes medicinal plants by headspace solid-phase microextraction-gas chromatography-mass spectrometry,” Analytica Chimica Acta, vol. 570, no. 1, pp. 73–78, 2006.
[8]  H. Meng, G.-Y. Li, R.-H. Dai et al., “Two new polyacetylenic compounds from Atractylodes chinensis (DC.) Koidz,” Journal of Asian Natural Products Research, vol. 13, no. 4, pp. 346–349, 2011.
[9]  M. Resch, J. Heilmann, A. Steigel, and R. Bauer, “Further phenols and polyacetylenes from the rhizomes of Atractylodes lancea and their anti-inflammatory activity,” Planta Medica, vol. 67, no. 5, pp. 437–442, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133