Ischemia enhanced release of endogenous neuroactive amino acids from cerebellar and cerebral cortical slices. More glutamate was released in adult than developing mice. Taurine release enhanced by K+ stimulation and ischemia was more than one magnitude greater than that of GABA or glutamate in the developing cerebral cortex and cerebellum, while in adults the releases were almost comparable. Aspartate release was prominently enhanced by both ischemia and K+ stimulation in the adult cerebral cortex. In the cerebellum K+ stimulation and ischemia evoked almost 10-fold greater GABA release in 3-month olds than in 7-day olds. The release of taurine increased severalfold in the cerebellum of 7-day-old mice in high-K+ media, whereas the K+-evoked effect was rather small in adults. In 3-month-old mice no effects of K+ stimulation or ischemia were seen in the release of aspartate, glycine, glutamine, alanine, serine, or threonine. The releases from the cerebral cortex and cerebellum were markedly different and also differed between developing and adult mice. In developing mice only the release of inhibitory taurine may be large enough to counteract the harmful effects of excitatory amino acids in ischemia in both cerebral cortex and cerebellum, in particular since at that age the release of glutamate and aspartate cannot be described as massive. 1. Introduction Glutamate and γ-aminobutyrate (GABA) are the two major amino acid transmitters in the cerebral cortex and cerebellum, glutamate being responsible for excitatory and GABA for inhibitory transmission [1]. In these higher brain regions glycine was earlier assumed to be only an obligatory cotransmitter in the excitatory N-methyl-D-aspartate- (NMDA-) sensitive glutamate receptors, but more recent studies have also demonstrated the existence and function of strychnine-sensitive inhibitory glycine receptors in these structures [2, 3]. In addition to these established neurotransmitters, taurine also affects neuronal activity as an inhibitory modulator [4]. In the rodent brain the concentrations of taurine are high. In particular, in the developing brain it is the most abundant amino acid, even exceeding the concentration of glutamate [5]. The excessive extracellular accumulation of excitatory amino acids, predominantly that of glutamate but also of aspartate, in ischemia leads to cellular damage in the brain [6, 7]. Their massive release activates glutamate receptors, in particular those of the NMDA class [8], which leads to an excessive influx of Ca2+ and consequent adverse effects [9]. This excitotoxicity may
References
[1]
G. E. Fagg and A. C. Foster, “Amino acid neurotransmitters and their pathways in the mammalian central nervous system,” Neuroscience, vol. 9, no. 4, pp. 701–719, 1983.
[2]
M. Darstein, G. B. Landwehrmeyer, C. Kling, C. M. Becker, and T. J. Feuerstein, “Strychnine-sensitive glycine receptors in rat caudatoputamen are expressed by cholinergic interneurons,” Neuroscience, vol. 96, no. 1, pp. 33–39, 2000.
[3]
O. A. Sergeeva and H. L. Haas, “Expression and function of glycine receptors in striatal cholinergic interneurons from rat and mouse,” Neuroscience, vol. 104, no. 4, pp. 1043–1055, 2001.
[4]
P. Saransaari and S. S. Oja, “Taurine in neurotransmission,” in Handbook of Neurochemistry and Molecular Neurobiology: Neurotransmitter Systems, A. Lajtha and S. E. Vizi, Eds., vol. 3rd, pp. 326–341, Springer, New York, NY, USA, 2008.
[5]
P. Klivenyi, K. A. Kekesi, Z. Hartai, G. Juhasz, and L. Vecsei, “Effects of mitochondrial toxins on the brain amino acid concentrations,” Neurochemical Research, vol. 30, no. 11, pp. 1421–1427, 2005.
[6]
S. P. Butcher, R. Bullock, D. I. Graham, and J. McCulloch, “Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion,” Stroke, vol. 21, no. 12, pp. 1727–1733, 1990.
[7]
D. L. Small, P. Morley, and A. M. Buchan, “Biology of ischemic cerebral cell death,” Progress in Cardiovascular Diseases, vol. 42, no. 3, pp. 185–207, 1999.
[8]
M. Szatkowski and D. Attwell, “Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms,” Trends in Neurosciences, vol. 17, no. 9, pp. 359–365, 1994.
[9]
P. Morley, M. J. Hogan, and A. M. Hakim, “Calcium-mediated mechanisms of ischemic injury and protection,” Brain Pathology, vol. 4, no. 1, pp. 37–47, 1994.
[10]
P. Saransaari and S. S. Oja, “Enhanced GABA release in cell-damaging conditions in the adult and developing mouse hippocampus,” International Journal of Developmental Neuroscience, vol. 15, no. 2, pp. 163–174, 1997.
[11]
P. Saransaari and S. S. Oja, “Release of endogenous glutamate, aspartate, GABA, and taurine from hippocampal slices from adult and developing mice under cell-damaging conditions,” Neurochemical Research, vol. 23, no. 4, pp. 563–570, 1998.
[12]
P. Andine, M. Sandberg, R. Bagenholm, A. Lehmann, and H. Hagberg, “Intra- and extracellular changes of amino acids in the cerebral cortex of the neonatal rat during hypoxic-ischemia,” Developmental Brain Research, vol. 64, no. 1-2, pp. 115–120, 1991.
[13]
T. Kubo, A. Takano, N. Tokushige, N. Miyata, M. Sato, and S. Hatakeyama, “Electrical stimulation-evoked release of endogenous taurine from slices of the hippocampus, cerebral cortex and cerebellum of the rat,” Journal of Pharmacobio-Dynamics, vol. 15, no. 9, pp. 519–525, 1992.
[14]
H. Huang, L. Barakat, D. Wang, and A. Bordey, “Bergmann glial GlyT1 mediates glycine uptake and release in mouse cerebellar slices,” Journal of Physiology, vol. 560, no. 3, pp. 721–736, 2004.
[15]
L. A. C. Reno, W. Zago, and R. P. Markus, “Release of [3H]-L-glutamate by stimulation of nicotinic acetylcholine receptors in rat cerebellar slices,” Neuroscience, vol. 124, no. 3, pp. 647–653, 2004.
[16]
P. Kontro and S. S. Oja, “Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brian,” Developmental Brain Research, vol. 37, no. 1-2, pp. 277–291, 1987.
[17]
S. S. Oja and P. Kontro, “Release of endogenous taurine and γ-aminobutyric acid from brain slices from the adult and developing mouse,” Journal of Neurochemistry, vol. 52, no. 4, pp. 1018–1024, 1989.
[18]
J. W. Phillis and M. H. O'Regan, “Mechanisms of glutamate and aspartate release in the ischemic rat cerebral cortex,” Brain Research, vol. 730, no. 1-2, pp. 150–164, 1996.
[19]
D. E. Pellegrini-Giampietro, G. Cherici, M. Alesiani, V. Carla, and F. Moroni, “Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage,” Journal of Neuroscience, vol. 10, no. 3, pp. 1035–1041, 1990.
[20]
G. G. Haddad and C. Jiang, “O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury,” Progress in Neurobiology, vol. 40, no. 3, pp. 277–318, 1993.
[21]
J. W. Phillis, M. Smith-Barbour, and M. H. O'Regan, “Changes in extracellular amino acid neurotransmitters and purines during and following ischemias of different durations in the rat cerebral cortex,” Neurochemistry International, vol. 29, no. 2, pp. 115–120, 1996.
[22]
Y. Katayama, T. Tamura, D. P. Becker, and T. Tsubokawa, “Early cellular swelling during cerebral ischemia in vivo is mediated by excitatory amino acids released from nerve terminals,” Brain Research, vol. 577, no. 1, pp. 121–126, 1992.
[23]
R. O. Law, “Amino acids as volume-regulatory osmolytes in mammalian cells,” Comparative Biochemistry and Physiology A, vol. 99, no. 3, pp. 263–277, 1991.
[24]
E. R. Korpi, P. Kontro, and K. Nieminen, “Spontaneous and depolarization-induced efflux of hypotaurine from mouse cerebral cortex slices: comparison with taurine and GABA,” Life Sciences, vol. 29, no. 8, pp. 811–816, 1981.
[25]
A. Y. Estevez, D. Song, J. W. Phillis, and M. H. O'Regan, “Effects of the anion channel blocker DIDS on ouabain- and high K+-induced release of amino acids from the rat cerebral cortex,” Brain Research Bulletin, vol. 52, no. 1, pp. 45–50, 2000.
[26]
D. Nicholls and D. Attwell, “The release and uptake of excitatory amino acids,” Trends in Pharmacological Sciences, vol. 11, no. 11, pp. 462–468, 1990.
[27]
J. W. Phillis, D. Song, and M. H. O'Regan, “Inhibition by anion channel blockers of ischemia-evoked release of excitotoxic and other amino acids from rat cerebral cortex,” Brain Research, vol. 758, no. 1-2, pp. 9–16, 1997.
[28]
R. A. Swanson, J. Chen, and S. H. Graham, “Glucose can fuel glutamate uptake in ischemic brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 14, no. 1, pp. 1–6, 1994.
[29]
M. C. Longuemare and R. A. Swanson, “Excitatory amino acid release from astrocytes during energy failure by reversal of sodium-dependent uptake,” Journal of Neuroscience Research, vol. 40, no. 3, pp. 379–386, 1995.
[30]
D. G. Nicholls, T. S. Sihra, and J. Sanchez-Prieto, “Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry,” Journal of Neurochemistry, vol. 49, no. 1, pp. 50–57, 1987.
[31]
M. Ikeda, T. Nakazawa, K. Abe, T. Kaneko, and K. Yamatsu, “Extracullular accumulation of glutamate in the hippocampus induced by ischemia is not calcium dependent - In vitro an in vivo evidence,” Neuroscience Letters, vol. 96, no. 2, pp. 202–206, 1989.
[32]
J. W. Phillis and M. H. O'Regan, “Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex,” Neurochemistry International, vol. 43, no. 4-5, pp. 461–467, 2003.
[33]
H. Benveniste, “The excitotoxin hypothesis in relation to cerebral ischemia,” Cerebrovascular and Brain Metabolism Reviews, vol. 3, no. 3, pp. 213–245, 1991.
[34]
D. W. Choi, “Excitotoxic cell death,” Journal of Neurobiology, vol. 23, no. 9, pp. 1261–1276, 1992.
[35]
S. Carboni, F. Melis, L. Pani, M. Hadjiconstantinou, and Z. L. Rossetti, “The non-competitive NMDA-receptor antagonist MK-801 prevents the massive release of glutamate and aspartate from rat striatum induced by 1-methyl-4-phenylpyridinium (MPP+),” Neuroscience Letters, vol. 117, no. 1-2, pp. 129–133, 1990.
[36]
G. Bustos, J. Abarca, M. I. Forray, K. Gysling, C. W. Bradberry, and R. H. Roth, “Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: in vivo microdialysis studies,” Brain Research, vol. 585, no. 1-2, pp. 105–115, 1992.
[37]
E. López, J. Hernandez, C. Arce, S. Ca?adas, M. J. Oset-Gasque, and M. P. González, “Involvement of NMDA receptor in the modulation of excitatory and inhibitory amino acid neurotransmitters release in cortical neurons,” Neurochemical Research, vol. 35, no. 9, pp. 1478–1486, 2010.
[38]
E. Hegstad, J. Berg-Johnsen, T. S. Haugstad, E. Hauglie-Hanssen, and I. A. Langmoen, “Amino-acid release from human cerebral cortex during simulated ischaemia in vitro,” Acta Neurochirurgica, vol. 138, no. 2, pp. 234–241, 1996.
[39]
F. Morin and C. Beaulieu, “Equivalent cell density in three areas of neonatal rat cerebral cortex,” Neuroscience Letters, vol. 176, no. 1, pp. 85–88, 1994.
[40]
C. Beaulieu and M. Colonnier, “A laminar analysis of the number of round-asymmetrical and flat- symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat,” Journal of Comparative Neurology, vol. 231, no. 2, pp. 180–189, 1985.
[41]
M. L. Simmons and G. R. Dutton, “Neuronal origins of K+-evoked amino acid release from cerebellar cultures,” Journal of Neuroscience Research, vol. 31, no. 4, pp. 646–653, 1992.
[42]
K. L. Rogers, R. A. Philibert, and G. R. Dutton, “Glutamate receptor agonists cause efflux of endogenous neuroactive amino acids from cerebellar neurons in culture,” European Journal of Pharmacology, vol. 177, no. 3, pp. 195–199, 1990.
[43]
G. Levi, M. Patrizio, and V. Gallo, “Release of endogenous and newly synthesized glutamate and of other amino acids induced by non-N-methyl-D-aspartate receptor activation in cerebellar granule cell cultures,” Journal of Neurochemistry, vol. 56, no. 1, pp. 199–206, 1991.
[44]
K. L. Rogers, R. A. Philibert, and G. R. Dutton, “K+-stimulated amino acid release from cultured cerebellar neurons: comparison of static and dynamic stimulation paradigms,” Neurochemical Research, vol. 16, no. 8, pp. 899–904, 1991.
[45]
S. S. Oja and P. Saransaari, “Taurine release and swelling of cerebral cortex slices from adult and developing mice in media of different ionic compositions,” Journal of Neuroscience Research, vol. 32, no. 4, pp. 551–561, 1992.
[46]
P. Saransaari and S. S. Oja, “Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus,” Neuroscience, vol. 79, no. 3, pp. 847–854, 1997.
[47]
M. L. Malosio, B. Marqueze-Pouey, J. Kuhse, and H. Betz, “Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain,” EMBO Journal, vol. 10, no. 9, pp. 2401–2409, 1991.
[48]
A. C. Flint, X. Liu, and A. R. Kriegstein, “Nonsynaptic glycine receptor activation during early neocortical development,” Neuron, vol. 20, no. 1, pp. 43–53, 1998.
[49]
K. Sato, H. Kiyama, and M. Tohyama, “Regional distribution of cells expressing glycine receptor α2 subunit mRNA in the rat brain,” Brain Research, vol. 590, no. 1-2, pp. 95–108, 1992.
[50]
S. Jonsson, N. Kerekes, P. Hyyti?, M. Ericson, and B. S?derpalm, “Glycine receptor expression in the forebrain of male AA/ANA rats,” Brain Research, vol. 1305, supplement, pp. S27–S36, 2009.
[51]
Y. Lu and J. H. Ye, “Glycine-activated chloride currents of neurons freshly isolated from the prefrontal cortex of young rats,” Brain Research, vol. 1393, pp. 17–22, 2011.
[52]
G. García-Alcocer, C. Mejía, L. C. Berumen, R. Miledi, and A. Martínez-Torres, “Developmental expression of glycine receptor subunits in rat cerebellum,” International Journal of Developmental Neuroscience, vol. 26, pp. 3119–3322, 2008.
[53]
S. Oja, E. R. Korpi, and P. Saransaari, “Modification of chloride flux across brain membranes by inhibitory amino acids in developing and adult mice,” Neurochemical Research, vol. 15, no. 8, pp. 797–804, 1990.
[54]
Y. Ben-Ari, “Excitatory actions of GABA during development: the nature of the nurture,” Nature Reviews Neuroscience, vol. 3, no. 9, pp. 728–739, 2002.
[55]
A. T. Gulledge and G. J. Stuart, “Excitatory actions of GABA in the cortex,” Neuron, vol. 37, no. 2, pp. 299–309, 2003.
[56]
W. Kilb, I. L. Hanganu, A. Okabe et al., “Glycine receptors mediate excitation of subplate neurons in neonatal rat cerebral cortex,” Journal of Neurophysiology, vol. 100, no. 2, pp. 698–707, 2008.
[57]
J. H. Ye, “Regulation of excitation by glycine receptors,” Results and Problems in Cell Differentiation, vol. 44, pp. 123–143, 2008.