Urotensin-II was originally isolated from the goby urophysis in the 1960s as a vasoactive peptide with a prominent role in cardiovascular homeostasis. The identification of human isoform of urotensin-II and its specific UT receptor by Ames et al. in 1999 led to investigating the putative role of the interaction U-II/UT receptor in multiple pathophysiological effects in humans. Since urotensin-II is widely expressed in several peripheral tissues including cardiovascular system, the design and development of novel urotensin-II analogues can improve knowledge about structure-activity relationships (SAR). In particular, since the modulation of the U-II system offers a great potential for therapeutic strategies related to the treatment of several diseases, like cardiovascular diseases, the research of selective and potent ligands at UT receptor is more fascinating. In this paper, we review the developments of peptide and nonpeptide U-II structures so far developed in order to contribute also to a more rational and detectable design and synthesis of new molecules with high affinity at the UT receptor. 1. Introduction Urotensin-II (U-II) belongs to a series of regulatory neuropeptides first isolated from the urophysis of the teleost fish Gillichthys mirabilis by Karl Lederis and Howard Bern in the 1960s. This cyclic peptide derived from goby fish, H-Ala-Gly-Thr-Ala-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH, was originally characterized on the basis of its interesting smooth muscle contracting and hypertensive effects. It has been long considered that U-II was exclusively produced by the fish urophysis [1]. However, the identification of U-II from the brain of a frog [2, 3] has shown that the cDNA encoding prepro-U-II exists in several species of vertebrates. Moreover, the gene is expressed not only in the caudal portion of the spinal cord but also in brain neurones, from frogs to humans [4]. In fact, urotensin-II isopeptides are present in several species of vertebrates, and although the amino acid sequence in the N-terminus of urotensin-II peptides diverges across species, the cyclic hexapeptide sequence, c[Cys-Phe-Trp-Lys-Tyr-Cys], is conserved in all isoforms (Figure 1, orange residues). Figure 1: A comparison of urotensin-II (U-II) isopeptides sequences isolated from different species of vertebrates. The length of urotensin-II peptides is variable across species and it ranged from 17 amino acid residues in mice to 11 in humans, depending on the proteolytic cleavages that occur in precursors. The N-terminus region of U-II is highly variable among animal species
References
[1]
H. A. Bern, D. Pearson, B. A. Larson, and R. S. Nishioka, “Neurohormones from fish tails: the caudal neurosecretory system. I. “Urophysiology” and the caudal neurosecretory system of fishes,” Recent Progress in Hormone Research, vol. 41, pp. 533–552, 1985.
[2]
J. M. Conlon, F. O'Harte, D. D. Smith, M. C. Tonon, and H. Vaudry, “Isolation and primary structure of urotensin II from the brain of a tetrapod, the frog Rana ridibunda,” Biochemical and Biophysical Research Communications, vol. 188, no. 2, pp. 578–583, 1992.
[3]
J. M. Conlon, N. Chartrel, J. Leprince, C. Suaudeau, J. Costentin, and H. Vaudry, “A proenkephalin A-derived peptide analogous to bovine adrenal peptide E from frog brain: purification, synthesis, and behavioral effects,” Peptides, vol. 17, no. 8, pp. 1291–1296, 1996.
[4]
H. Tostivint, I. Lihrmann, C. Bucharles et al., “A second somatostatin gene is expressed in the brain of the frog Rana ridibunda,” Annals of the New York Academy of Sciences, vol. 839, no. 1, pp. 496–497, 1998.
[5]
J. M. Conlon, K. Yano, D. Waugh, and N. Hazon, “Distribution and molecular forms of urotensin II and its role in cardiovascular regulation in vertebrates,” Journal of Experimental Zoology, vol. 275, no. 2-3, pp. 226–238, 1996.
[6]
A. L. Colton, “Effective thermal parameters for a heterogenous land surface,” Remote Sensing of Environment, vol. 57, no. 3, pp. 143–160, 1996.
[7]
P. Brazeau, W. Vale, R. Burgus et al., “Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone,” Science, vol. 179, no. 4068, pp. 77–79, 1973.
[8]
S. Ohsako, I. Ishida, T. Ichikawa, and T. Deguchi, “Cloning and sequence analysis of cDNAs encoding precursors of urotensin II-α and -γ,” Journal of Neuroscience, vol. 6, no. 9, pp. 2730–2735, 1986.
[9]
D. Pearson, J. E. Shively, B. R. Clark et al., “Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of fishes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 8, pp. 5021–5024, 1980.
[10]
R. S. Ames, H. M. Sarau, J. K. Chambers et al., “Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14,” Nature, vol. 401, pp. 282–286, 1999.
[11]
H. P. Nothacker, Z. Wang, A. M. McNeill et al., “Identification of the natural ligand of an orphan G-protein-coupled receptor involved in the regulation of vasoconstriction,” Nature Cell Biology, vol. 1, no. 6, pp. 383–385, 1999.
[12]
K. Mori, H. Nagao, and Y. Yoshihara, “The olfactory bulb: coding and processing of odor molecule information,” Science, vol. 286, no. 5440, pp. 711–715, 1999.
[13]
S. A. Douglas and E. H. Ohlstein, “Human urotensin-II, the most potent mammalian vasoconstrictor identified to date, as a therapeutic target for the management of cardiovascular disease,” Trends in Cardiovascular Medicine, vol. 10, no. 6, pp. 229–237, 2000.
[14]
J. J. Maguire, R. E. Kuc, and A. P. Davenport, “Orphan-receptor ligand human urotensin II: receptor localization human tissues and comparison of vasoconstrictor responses with endothelin-1,” British Journal of Pharmacology, vol. 131, no. 3, pp. 441–446, 2000.
[15]
M. Matsushita, M. Shichiri, T. Imai et al., “Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues,” Journal of Hypertension, vol. 19, no. 12, pp. 2185–2190, 2001.
[16]
J. J. Maguire and A. P. Davenport, “Is urotensin-II the new endothelin?” British Journal of Pharmacology, vol. 137, no. 5, pp. 579–588, 2002.
[17]
Y. C. Zhu, Y. Z. Zhu, and P. K. Moore, “The role of urotensin II in cardiovascular and renal physiology and diseases,” British Journal of Pharmacology, vol. 148, pp. 884–901, 2006.
[18]
S. Suzuki, Z. Wenyi, M. Hirai et al., “Genetic variations at urotensin II and urotensin II receptor genes and risk of type 2 diabetes mellitus in Japanese,” Peptides, vol. 25, no. 10, pp. 1803–1808, 2004.
[19]
O. V. Muravenko, R. Z. Gizatullin, A. N. Al-Amin et al., “Human ALY/BEF gene map position 17q25.3,” Chromosome Research, vol. 8, no. 6, p. 562, 2000.
[20]
R. d’Emmanuele di Villa Bianca, E. Mitidieri, F. Fusco et al., “Endogenous urotensin II selectively modulates erectile function through eNOS,” PLoS One, vol. 7, no. 2, Article ID e31019, 2012.
[21]
S. A. Douglas and E. H. Ohlstein, “Human urotensin-II, the most potent mammalian vasoconstrictor identified To date, as a therapeutic target for the management of cardiovascular disease,” Trends in Cardiovascular Medicine, vol. 10, no. 6, pp. 229–237, 2000.
[22]
S. A. Douglas, D. Naselsky, Z. Ao et al., “Identification and pharmacological characterization of native, functional human urotensin-II receptors in rhabdomyosarcoma cell lines,” British Journal of Pharmacology, vol. 142, no. 6, pp. 921–932, 2004.
[23]
R. Bhaskaran and C. Yu, “NMR spectra and restrained molecular dynamics of the mushroom toxin viroisin,” International Journal of Peptide and Protein Research, vol. 43, no. 4, pp. 393–401, 1994.
[24]
S. Flohr, M. Kurz, E. Kostenis, A. Brkovich, A. Fournier, and T. Klabunde, “Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure-activity relationships and nuclear magnetic resonance studies on urotensin II,” Journal of Medicinal Chemistry, vol. 45, no. 9, pp. 1799–1805, 2002.
[25]
P. Grieco, A. Carotenuto, R. Patacchini, C. A. Maggi, E. Novellino, and P. Rovero, “Design, synthesis, conformational analysis, and biological studies of urotensin-II lactam analogues,” Bioorganic and Medicinal Chemistry, vol. 10, no. 12, pp. 3731–3739, 2002.
[26]
A. Carotenuto, P. Grieco, P. Campiglia, E. Novellino, and P. Rovero, “Unraveling the active conformation of urotensin II,” Journal of Medicinal Chemistry, vol. 47, no. 7, pp. 1652–1661, 2004.
[27]
D. H. Coy, W. J. Rossowski, B. L. Cheng, and J. E. Taylor, “Structural requirements at the N-terminus of urotensin II octapeptides,” Peptides, vol. 23, pp. 2259–2264, 2002.
[28]
D. McMaster, Y. Kobayashi, J. Rivier, and K. Lederis, “Characterization of the biologically and antigenically important regions of urotensin II,” Proceedings of the Western Pharmacology Society, vol. 29, pp. 205–208, 1986.
[29]
P. Grieco, A. Carotenuto, P. Campiglia, et al., “A new, potent urotensin II receptor peptide agonist containing a Pen residue at the disulfide bridge,” Journal of Medicinal Chemistry, vol. 45, no. 20, pp. 4391–4394, 2002.
[30]
S. Foister, L. L. Taylor, J. J. Feng et al., “Design and synthesis of potent cystine-free cyclic hexapeptide agonists at the human urotensin receptor,” Organic Letters, vol. 8, no. 9, pp. 1799–1802, 2006.
[31]
A. Lavecchia, S. Cosconati, and E. Novellino, “Architecture of the human urotensin II receptor: comparison of the binding domains of peptide and non-peptide urotensin II agonists,” Journal of Medicinal Chemistry, vol. 48, no. 7, pp. 2480–2492, 2005.
[32]
W. A. Kinney, H. R. Almond Jr., J. Qi et al., “Structure-function analysis of urotensin II and its use in the construction of a ligand-receptor working model,” Angewandte Chemie—International Edition, vol. 41, no. 16, pp. 2940–2944, 2002.
[33]
R. Guerrini, V. Camarda, E. Marzola et al., “Structure-activity relationship study on human urotensin II,” Journal of Peptide Science, vol. 11, no. 2, pp. 85–90, 2005.
[34]
A. Carotenuto, P. Grieco, P. Rovero, and E. Novellino, “Urotensin-II receptor antagonists,” Current Medicinal Chemistry, vol. 13, no. 3, pp. 267–275, 2006.
[35]
D. J. Behm, C. L. Herold, E. H. Ohlstein, S. D. Knight, D. Dhanak, and S. A. Douglas, “Pharmacological characterization of SB-710411 (Cpa-c[D-Cys-Pal-D-Trp-Lys-Val-Cys]-Cpa-amide), a novel peptidic urotensin-II receptor antagonist,” British Journal of Pharmacology, vol. 137, no. 4, pp. 449–458, 2002.
[36]
D. J. Behm, C. L. Herold, V. Camarda, N. V. Aiyar, and S. A. Douglas, “Differential agonistic and antagonistic effects of the urotensin-II ligand SB-710411 at rodent and primate UT receptors,” European Journal of Pharmacology, vol. 492, no. 2-3, pp. 113–116, 2004.
[37]
N. A. Elshourbagy, S. A. Douglas, U. Shabon et al., “Molecular and pharmacological characterization of genes encoding urotensin-II peptides and their cognate G-protein-coupled receptors from the mouse and monkey,” British Journal of Pharmacology, vol. 136, no. 1, pp. 9–22, 2002.
[38]
V. Camarda, R. Guerrini, E. Kostenis et al., “A new ligand for the urotensin II receptor,” British Journal of Pharmacology, vol. 137, no. 3, pp. 311–314, 2002.
[39]
M. Orbuch, J. E. Taylor, D. H. Coy et al., “Discovery of a novel class of neuromedin B receptor antagonists, substituted somatostatin analogues,” Molecular Pharmacology, vol. 44, no. 4, pp. 841–850, 1993.
[40]
C. L. Herold, D. J. Behm, P. T. Buckley et al., “The neuromedin B receptor antagonist, BIM-23127, is a potent antagonist at human and rat urotensin-II receptors,” British Journal of Pharmacology, vol. 139, no. 2, pp. 203–207, 2003.
[41]
C. L. Herold, D. J. Behm, P. T. Buckely, J. J. Foley, and S. A. Douglas, “The peptidic somatostatin analogs lanreotide, BIM-23127 and BIM-23042 are urotensin-II receptor ligands,” Pharmacologist, vol. 44, pp. 170–171, 2002.
[42]
R. Patacchini, P. Santicioli, S. Giuliani et al., “Urantide: an ultrapotent urotensin II antagonist peptide in the rat aorta,” British Journal of Pharmacology, vol. 140, no. 7, pp. 1155–1158, 2003.
[43]
P. Grieco, A. Carotenuto, P. Campiglia et al., “Urotensin-II receptor ligands. From agonist to antagonist activity,” Journal of Medicinal Chemistry, vol. 48, no. 23, pp. 7290–7297, 2005.
[44]
V. Camarda, W. Song, E. Marzola et al., “Urantide mimics urotensin-II induced calcium release in cells expressing recombinant UT receptors,” European Journal of Pharmacology, vol. 498, no. 1–3, pp. 83–86, 2004.
[45]
V. Camarda, M. Spagnol, W. Song et al., “In vitro and in vivo pharmacological characterization of the novel UT receptor ligand [Pen5,DTrp7,Dab8]urotensin II(4-11) (UFP-803),” British Journal of Pharmacology, vol. 147, no. 1, pp. 92–100, 2006.
[46]
T. Sugo, Y. Murakami, Y. Shimomura et al., “Identification of urotensin II-related peptide as the urotensin II-immunoreactive molecule in the rat brain,” Biochemical and Biophysical Research Communications, vol. 310, no. 3, pp. 860–868, 2003.
[47]
D. Chatenet, C. Dubessy, J. Leprince et al., “Structure-activity relationships and structural conformation of a novel urotensin II-related peptide,” Peptides, vol. 25, no. 10, pp. 1819–1830, 2004.
[48]
D. Chatenet, Q. T. Nguyen, M. Létourneau, J. Dupuis, and A. Fournier, “Urocontrin, a novel UT receptor ligand with a unique pharmacological profile,” Biochemical Pharmacology, vol. 83, no. 5, pp. 608–615, 2012.
[49]
M. Jarry, M. Diallo, C. Lecointre et al., “The vasoactive peptides urotensin II and urotensin II-related peptide regulate astrocyte activity through common and distinct mechanisms: involvement in cell proliferation,” Biochemical Journal, vol. 428, no. 1, pp. 113–124, 2010.
[50]
H. C. G. Prosser, J. Leprince, H. Vaudry, A. M. Richards, M. E. Forster, and C. J. Pemberton, “Cardiovascular effects of native and non-native urotensin II and urotensin II-related peptide on rat and salmon hearts,” Peptides, vol. 27, no. 12, pp. 3261–3268, 2006.
[51]
T. Kenakin, “Drug efficacy at G protein-coupled receptors,” Annual Review of Pharmacology and Toxicology, vol. 42, pp. 349–379, 2002.
[52]
D. J. Behm, G. Stankus, C. P. A. Doe et al., “The peptidic urotensin-II receptor ligand GSK248451 possesses less intrinsic activity than the low-efficacy partial agonists SB-710411 and urantide in native mammalian tissues and recombinant cell systems,” British Journal of Pharmacology, vol. 148, no. 2, pp. 173–190, 2006.
[53]
D. H. Coy, W. J. Rossowski, B. L. Cheng, and J. E. Taylor, “Highly potent heptapeptide antagonists of the vasoactive peptide urotensin II,” in Proceedings of the 225th ACS National Meeting, American Chemical Society, New Orleans, La, USA, March 2003.
[54]
N. Aiyar, D. G. Johns, Z. Ao et al., “Cloning and pharmacological characterization of the cat urotensin-II receptor (UT),” Biochemical Pharmacology, vol. 69, no. 7, pp. 1069–1079, 2005.
[55]
G. E. Croston, R. Olsson, E. A. Currier et al., “Discovery of the first nonpeptide agonist of the GPR14/Urotensin-II receptor: 3-(4-chlorophenyl)-3-(2-(dimethylamino)ethyl)isochroman-1-one (AC-7954),” Journal of Medicinal Chemistry, vol. 45, no. 23, pp. 4950–4953, 2002.
[56]
F. Lehmann, E. A. Currier, R. Olsson, U. Hacksell, and K. Luthman, “Isochromanone-based urotensin-II receptor agonists,” Bioorganic and Medicinal Chemistry, vol. 13, no. 8, pp. 3057–3068, 2005.
[57]
F. Lehmann, L. Lake, E. A. Currier, R. Olsson, U. Hacksell, and K. Luthman, “Design, parallel synthesis and SAR of novel urotensin II receptor agonists,” European Journal of Medicinal Chemistry, vol. 42, no. 2, pp. 276–285, 2007.
[58]
F. Lehmann, E. A. Currier, B. Clemons et al., “Novel and potent small-molecule urotensin II receptor agonists,” Bioorganic and Medicinal Chemistry, vol. 17, no. 13, pp. 4657–4665, 2009.
[59]
M. Clozel, C. Binkert, M. Birker-Robaczewska et al., “Pharmacology of the urotensin-II receptor antagonist palosuran (ACT-058362; 1-[2-(4-benzyl-4-hydroxy-piperidin-1-yl)-ethyl]-3-(2-methyl-quinolin-4-yl)-urea sulfate salt): first demonstration of a pathophysiological role of the urotensin system,” Journal of Pharmacology and Experimental Therapeutics, vol. 311, no. 1, pp. 204–212, 2004.
[60]
H. Aissaoui, C. Binkert, M. Clozel et al., “Preparation of 1-(piperazinylalkyl)-3-quinolinylurea derivatives as urotensin II antagonists,” Actelion Pharmaceuticals Ltd., PCT International Application no. WO2004099179, 2004.
[61]
H. Aissaoui, C. Binkert, M. Clozel et al., “Preparation of novel piperidine derivatives as urotensin II antagonists,” Actelion Pharmaceutical Ltd., PCT International Application no. WO2004099180, 2004.
[62]
H. Aissoui, C. Binkert, M. Clozel et al., “Preparation of 1, 2, 3, 4-tetrahydroisoquinolinyl ureas and related derivatives as urotensin II receptor antagonists,” Actelion Pharmaceuticals Ltd., PCT International Application no. WO2002076979, 2002.
[63]
N. Tarui, T. Santo, M. Mori, and H. Watanabe, “Quinoline derivatives as vasoactive agents exhibiting orphanr eceptor GPR14 protein antagonism,” Takeda Chemical Industries, PCT International Application no. WO2001066143, 2001.
[64]
D. Dhanak and S. D. Knight, “Preparation of quinolones as urotensin-II receptor antagonists,” Smithkline Beecham Corporation, PCT International Application no. WO2002047456, 2002.
[65]
N. Bousette, J. Pottinger, W. Ramli et al., “Urotensin-II receptor blockade with SB-611812 attenuates cardiac remodeling in experimental ischemic heart disease,” Peptides, vol. 27, no. 11, pp. 2919–2926, 2006.
[66]
S. A. Douglas, D. J. Behm, N. V. Aiyar et al., “Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375,” British Journal of Pharmacology, vol. 145, no. 5, pp. 620–635, 2005.
[67]
D. J. Behm, J. J. McAtee, J. W. Dodson et al., “Palosuran inhibits binding to primate UT receptors in cell membranes but demonstrates differential activity in intact cells and vascular tissues,” British Journal of Pharmacology, vol. 155, no. 3, pp. 374–386, 2008.
[68]
C. Wu, D. Gao, R. Biediger, J. Chen, and R. V. Market, “Phenylenediamine urotensin-II receptor antagonists and CCR-9 antagonists,” Encysive Pharmaceuticals, Inc., US patent no. 7,288,538 B2, 2007.
[69]
J. Jin, D. Dhanak, S. D. Knight et al., “Aminoalkoxybenzyl pyrrolidines as novel human urotensin-II receptor antagonists,” Bioorganic and Medicinal Chemistry Letters, vol. 15, no. 13, pp. 3229–3232, 2005.
[70]
N. Tarui, T. Santo, H. Watanabe, K. Aso, T. Miwa, and S. Takekawa, “Preparation of biphenylcarboxamide compounds as GPR14 antagonists or somatostatin receptor regulators,” Takeda Chemical Industries, PCT International Application no. WO2002000606, 2002.
[71]
D. K. Luci, S. Ghosh, C. E. Smith et al., “Phenylpiperidine-benzoxazinones as urotensin-II receptor antagonists: synthesis, SAR, and in vivo assessment,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 23, pp. 6489–6492, 2007.
[72]
E. C. Lawson, D. K. Luci, S. Ghosh et al., “Nonpeptide urotensin-II receptor antagonists: a new ligand class based on piperazino-phthalimide and piperazino-isoindolinone subunits,” Journal of Medicinal Chemistry, vol. 52, no. 23, pp. 7432–7445, 2009.
[73]
D. K. Luci, E. C. Lawson, S. Ghosh et al., “Generation of novel, potent urotensin-II receptor antagonists by alkylation-cyclization of isoindolinone C3-carbanions,” Tetrahedron Letters, vol. 50, no. 35, pp. 4958–4961, 2009.
[74]
M. A. Hilfiker, D. Zhang, S. E. Dowdell et al., “Aminomethylpiperazines as selective urotensin antagonists,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 16, pp. 4470–4473, 2008.
[75]
J. Jin, Y. Wang, F. Wang et al., “2-aminomethyl piperidines as novel urotensin-II receptor antagonists,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 9, pp. 2860–2864, 2008.
[76]
Y. Wang, Z. Wu, B. F. Guida et al., “N-alkyl-5H-pyrido[4,3-b]indol-1-amines and derivatives as novel urotensin-II receptor antagonists,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 18, pp. 4936–4939, 2008.