全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Potential Anticarcinogenic Peptides from Bovine Milk

DOI: 10.1155/2013/939804

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bovine milk possesses a protein system constituted by two major families of proteins: caseins (insoluble) and whey proteins (soluble). Caseins (αS1, αS2, β, and κ) are the predominant phosphoproteins in the milk of ruminants, accounting for about 80% of total protein, while the whey proteins, representing approximately 20% of milk protein fraction, include β-lactoglobulin, α-lactalbumin, immunoglobulins, bovine serum albumin, bovine lactoferrin, and lactoperoxidase, together with other minor components. Different bioactivities have been associated with these proteins. In many cases, caseins and whey proteins act as precursors of bioactive peptides that are released, in the body, by enzymatic proteolysis during gastrointestinal digestion or during food processing. The biologically active peptides are of particular interest in food science and nutrition because they have been shown to play physiological roles, including opioid-like features, as well as immunomodulant, antihypertensive, antimicrobial, antiviral, and antioxidant activities. In recent years, research has focused its attention on the ability of these molecules to provide a prevention against the development of cancer. This paper presents an overview of antitumor activity of caseins and whey proteins and derived peptides. 1. Introduction Milk proteins can exert a wide range of physiological activities, including enhancement of immune function, defense against pathogenic bacteria, viruses, and yeasts, and development of the gut and its functions [1]. Besides the biologically active proteins naturally occurring in milk, a variety of bioactive peptides are encrypted within the sequence of milk proteins that are released upon suitable hydrolysis of the precursor protein. A large range of bioactivities has been reported for milk protein components, with some showing more than one kind of biological activity [2]. Particularly, the present paper reviews the most important antitumor peptides derived from milk proteins (Table 1). Table 1: Anticancer peptide and proteins from bovine milk [ 5]. Peptides derived from casein digestion have demonstrated antimutagenic properties [3]. Animal models for colon and mammary tumorigenesis have generally shown that whey protein is superior to other dietary proteins for suppression of tumour development [4]. This benefit is attributed to its high content of cystine/cysteine and γ-glutamylcyst(e)ine dipeptides, which are efficient substrates for the synthesis of glutathione, an ubiquitous cellular antioxidant that destroys reactive oxygen species and detoxifies

References

[1]  I. Lopez-Exposito and I. Recio, “Protective effect of milk peptides: antibacterial and antitumor properties,” Advances in Experimental Medicine and Biology, vol. 606, pp. 271–293, 2008.
[2]  P. W. Parodi, “A role for milk proteins and their peptides in cancer prevention,” Current Pharmaceutical Design, vol. 13, no. 8, pp. 813–828, 2007.
[3]  A. Tellez, M. Corredig, L. Y. Brovko, and M. W. Griffiths, “Characterization of immune-active peptides obtained from milk fermented by Lactobacillus helveticus,” Journal of Dairy Research, vol. 77, no. 2, pp. 129–136, 2010.
[4]  H. Sasaki and H. Kume, “Nutritional and physiological effects of peptides from whey: milk whey proteins/peptides, natural beneficial modulators of inflammation,” Bulletin of the International Dairy Federation, vol. 417, pp. 43–50, 2007.
[5]  L. Sawyer, “β-lactoglobulin,” in Advanced Dairy Chemistry I, P. F. Fox and P. McSweeney, Eds., pp. 319–386, Kluwer, Amsterdam, The Netherlands, 3rd edition, 2003.
[6]  A. Henschen, F. Lottspeich, V. Brantl, and H. Teschemacher, “Novel opioid peptides derived from casein (β-casomorphins). II. Structure of active components from bovine casein peptone,” Hoppe-Seyler's Zeitschrift fur Physiologische Chemie, vol. 360, no. 9, pp. 1217–1224, 1979.
[7]  Z. Sun, Z. Zhang, X. Wang, R. Cade, Z. Elmir, and M. Fregly, “Relation of β-casomorphin to apnea in sudden infant death syndrome,” Peptides, vol. 24, no. 6, pp. 937–943, 2003.
[8]  F. J?nicke, M. Schmitt, L. Pache et al., “Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer,” Breast Cancer Research and Treatment, vol. 24, no. 3, pp. 195–208, 1992.
[9]  A. K. Tandon, G. M. Clark, G. C. Chamness, J. M. Chirgwin, and W. L. McGuire, “Cathepsin D and prognosis in breast cancer,” New England Journal of Medicine, vol. 322, no. 5, pp. 297–302, 1990.
[10]  A. Hatzoglou, E. Bakogeorgou, C. Hatzoglou, P. M. Martin, and E. Castanas, “Antiproliferative and receptor binding properties of α- and β-casomorphins in the T47D human breast cancer cell line,” European Journal of Pharmacology, vol. 310, no. 2-3, pp. 217–223, 1996.
[11]  S. Loukas, D. Varoucha, and C. Zioudrou, “Opioid activities and structures of α-casein-derived exorphins,” Biochemistry, vol. 22, no. 19, pp. 4567–4573, 1983.
[12]  H. Teschemacher, “Opioid receptor ligands derived from food proteins,” Current Pharmaceutical Design, vol. 9, no. 16, pp. 1331–1344, 2003.
[13]  M. Kampa, S. Loukas, A. Hatzoglou, P. Martin, P. M. Martin, and E. Castanas, “Identification of a novel opioid peptide (Tyr-Val-Pro-Phe-Pro) derived from human αs1 casein (αs1-casomorphin, and αs1-casomorphin amide),” Biochemical Journal, vol. 319, no. 3, pp. 903–908, 1996.
[14]  C. De Simone, P. Ferranti, G. Picariello et al., “Peptides from water buffalo cheese whey induced senescence cell death via ceramide secretion in human colon adenocarcinoma cell line,” Molecular Nutrition and Food Research, vol. 55, no. 2, pp. 229–238, 2011.
[15]  C. De Simone, G. Picariello, G. Mamone et al., “Characterisation and cytomodulatory properties of peptides from Mozzarella di Bufala Campana cheese whey,” Journal of Peptide Science, vol. 15, no. 3, pp. 251–258, 2009.
[16]  R. Berrocal, S. Chanton, M. A. Juillerat, B. Pavillard, J. C. Scherz, and R. Jost, “Tryptic phosphopeptides from whole casein. II. Physicochemical properties related to the solubilization of calcium,” Journal of Dairy Research, vol. 56, no. 3, pp. 335–341, 1989.
[17]  A. Zawadzki, Q. Liu, Y. Wang, A. Melander, B. Jeppsson, and H. Thorlacius, “Verapamil inhibits L-type calcium channel mediated apoptosis in human colon cancer cells,” Diseases of the Colon and Rectum, vol. 51, no. 11, pp. 1696–1702, 2008.
[18]  S. Perego, S. Cosentino, A. Fiorilli, G. Tettamanti, and A. Ferraretto, “Casein phosphopeptides modulate proliferation and apoptosis in HT-29 cell line through their interaction with voltage-operated L-type calcium channels,” The Journal of Nutritional Biochemistry, vol. 23, no. 7, pp. 808–816, 2012.
[19]  K. Brew, F. J. Castellino, T. C. Vanaman, and R. L. Hill, “The complete amino acid sequence of bovine alpha-lactalbumin,” Journal of Biological Chemistry, vol. 245, no. 17, pp. 4570–4582, 1970.
[20]  P. F. Fox, “The milk protein system,” in Developments of Dairy Chemistry-4-Functional Peptides, P. F. Fox, Ed., pp. 35–45, Elsevier Applied Science Publishers, London, UK, 1989.
[21]  J. Fast, A. K. Mossberg, H. Nilsson, C. Svanborg, M. Akke, and S. Linse, “Compact oleic acid in HAMLET,” FEBS Letters, vol. 579, no. 27, pp. 6095–6100, 2005.
[22]  M. Svensson, J. Fast, A. K. Mossberg et al., “α-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human α-lactalbumin made lethal to tumor cells),” Protein Science, vol. 12, no. 12, pp. 2794–2804, 2003.
[23]  A. H?kansson, B. Zhivotovsky, S. Orrenius, H. Sabharwal, and C. Svanborget, “Apoptosis induced by a human milk protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 8064–8068, 1995.
[24]  E. A. Permyakov and L. J. Berliner, “α-Lactalbumin: structure and function,” FEBS Letters, vol. 473, no. 3, pp. 269–274, 2000.
[25]  L. G. Sternhagen and J. C. Allen, “Growth rates of a human colon adenocarcinoma cell line are regulated by the milk protein alpha-lactalbumin,” Advances in Experimental Medicine and Biology, vol. 501, pp. 115–120, 2001.
[26]  A. S. Goldman, R. M. Goldblum, and L. A. Hanson, “Anti-inflammatory systems in human milk,” in Antioxidant Nutrients and Immune Functions, A. Bendich, M. Phillips, and R. P. Tengerdy, Eds., pp. 69–76, Plenum Press, New York, NY, USA, 1990.
[27]  D. E. W. Chatterton, G. Smithers, P. Roupas, and A. Brodkorb, “Bioactivity of β-lactoglobulin and α-lactalbumin-Technological implications for processing,” International Dairy Journal, vol. 16, no. 11, pp. 1229–1240, 2006.
[28]  J. E. Kinsella and D. M. Whitehead, “Proteins in whey: chemical, physical, and functional properties,” Advances in Food and Nutrition Research, vol. 33, no. C, pp. 343–438, 1989.
[29]  J. N. de Wit, “Functional properties of whey proteins,” in Developments of Dairy Chemistry-4-Functional Peptides, P. F. Fox, Ed., pp. 285–322, Elsevier Applied Science Publishers, London, UK, 1989.
[30]  I. Laursen, P. Briand, and A. E. Lykkesfeldt, “Serum albumin as a modulator on growth of the human breast cancer cell line, MCF-7,” Anticancer Research A, vol. 10, no. 2, pp. 343–351, 1990.
[31]  I. E. M. Bosselaers, P. W. J. R. Caessens, M. A. J. S. Van Boekel, and G. M. Alink, “Differential effects of milk proteins, BSA and soy protein on 4NQO- or MNNG-induced SCEs in V79 cells,” Food and Chemical Toxicology, vol. 32, no. 10, pp. 905–909, 1994.
[32]  J. Hauer, W. Voetsh, and F. A. Anderer, “Identification of a mannose-acetate-specific 87-kDa receptor responsible for human NK and LAK activity,” Immunology Letters, vol. 42, no. 1-2, pp. 7–12, 1994.
[33]  T. Zagulski, P. Lipinski, A. Zagulska, S. Broniek, and Z. Jarzabek, “Lactoferrin can protect mice against a lethal dose of Escherichia coli in experimental infection in vivo,” British Journal of Experimental Pathology, vol. 70, no. 6, pp. 697–704, 1989.
[34]  J. He and P. Furmanski, “Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA,” Nature, vol. 373, no. 6516, pp. 721–724, 1995.
[35]  P. E. Florian, M. Trif, R. W. Evans, and A. Ro?eanu, “An overview on the antiviral activity of Lactoferrin,” Romanian Journal of Biochemistry, vol. 46, no. 2, pp. 187–197, 2009.
[36]  M. Tomita, W. Bellamy, M. Takase, K. Yamauchi, H. Wakabayashi, and K. Kawase, “Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin,” Journal of Dairy Science, vol. 74, no. 12, pp. 4137–4142, 1991.
[37]  W. Bellamy, M. Takase, K. Yamauchi, H. Wakabayashi, K. Kawase, and M. Tomita, “Identification of the bactericidal domain of lactoferrin,” Biochimica et Biophysica Acta, vol. 1112, no. 1-2, pp. 130–136, 1992.
[38]  Y. C. Yoo, R. Watanabe, Y. Koike et al., “Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-devived peptide: involvement of reactive oxygen species,” Biochemical and Biophysical Research Communications, vol. 237, no. 3, pp. 624–628, 1997.
[39]  L. T. Eliassen, G. Berge, B. Sveinbj?rnsson, J. S. Svendsen, L. H. Vorland, and ?. Rekdal, “Evidence for a direct antitumor mechanism of action of bovine lactoferricin,” Anticancer Research, vol. 22, no. 5, pp. 2703–2710, 2002.
[40]  J. S. Mader, J. Salsman, D. M. Conrad, and D. W. Hoskin, “Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines,” Molecular Cancer Therapeutics, vol. 4, no. 4, pp. 612–624, 2005.
[41]  L. T. Eliassen, G. Berge, A. Leknessund et al., “The antimicrobial peptide, Lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo,” International Journal of Cancer, vol. 119, no. 3, pp. 493–500, 2006.
[42]  S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Lactoferricin-induced apoptosis in estrogen-nonresponsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen,” Oncology reports., vol. 15, no. 5, pp. 1385–1390, 2006.
[43]  M. D. Burdick, A. Harris, C. J. Reid, T. Iwamura, and M. A. Hollingsworth, “Oligosaccharides expressed on MUC1 by pancreatic and colon tumor cell lines,” Journal of Biological Chemistry, vol. 272, no. 39, pp. 20202–24198, 1997.
[44]  J. W. Dennis, “N-linked oligosaccharide processing and tumor cell biology,” Seminars in Cancer Biology, vol. 2, no. 6, pp. 411–420, 1991.
[45]  T. Utsugi, A. J. Schroit, J. Connor, C. D. Bucana, and I. J. Fidler, “Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes,” Cancer Research, vol. 51, no. 11, pp. 3062–3066, 1991.
[46]  I. Dobrzyńska, B. Szachowicz-Petelska, S. Sulkowski, and Z. Figaszewski, “Changes in electric charge and phospholipids composition in human colorectal cancer cells,” Molecular and Cellular Biochemistry, vol. 276, no. 1-2, pp. 113–119, 2005.
[47]  W. H. Yoon, H. D. Park, K. Lim, and B. D. Hwang, “Effect of O-glycosylated mucin on invasion and metastasis of HM7 human colon cancer cells,” Biochemical and Biophysical Research Communications, vol. 222, no. 3, pp. 694–699, 1996.
[48]  L. T. Eliassen, B. E. Haug, G. Berge, and ?. Rekdal, “Enhanced antitumour activity of 15-residue bovine lactoferricin derivatives containing bulky aromatic amino acids and lipophilic N-terminal modifications,” Journal of Peptide Science, vol. 9, no. 8, pp. 510–517, 2003.
[49]  N. Yang, M. B. Str?m, S. M. Mekonnen, J. S. Svendsen, and ?. Rekdal, “The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells,” Journal of Peptide Science, vol. 10, no. 1, pp. 37–46, 2004.
[50]  J. L. Gifford, H. N. Hunter, and H. J. Vogel, “Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2588–2598, 2005.
[51]  S. Riedl, B. Rinner, S. Tumer, H. Schaider, K. Lohner, and D. Zweytick, “Targeting the cancer cell membrane specifically with human lactoferricin derivatives,” Annals of Oncology, vol. 22, pp. 31–34, 2011.
[52]  E. Staudegger, E. J. Prenner, M. Kriechbaum et al., “X-ray studies on the interaction of the antimicrobial peptide gramicidin S with microbial lipid extracts: evidence for cubic phase formation,” Biochimica et Biophysica Acta, vol. 1468, no. 1-2, pp. 213–230, 2000.
[53]  R. Willumeit, M. Kumpugdee, S. S. Funari et al., “Structural rearrangement of model membranes by the peptide antibiotic NK-2,” Biochimica et Biophysica Acta, vol. 1669, no. 2, pp. 125–134, 2005.
[54]  A. Hickel, S. Danner-Pongratz, H. Amenitsch et al., “Influence of antimicrobial peptides on the formation of nonlamellar lipid mesophases,” Biochimica et Biophysica Acta, vol. 1778, no. 10, pp. 2325–2333, 2008.
[55]  D. Zweytick, S. Tumer, S. E. Blondelle, and K. Lohner, “Membrane curvature stress and antibacterial activity of lactoferricin derivatives,” Biochemical and Biophysical Research Communications, vol. 369, no. 2, pp. 395–400, 2008.
[56]  D. Zweytick, G. Deutsch, J. Andr? et al., “Studies on Lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides,” Journal of Biological Chemistry, vol. 286, no. 24, pp. 21266–21276, 2011.
[57]  J. S. Mader, A. Richardson, J. Salsman et al., “Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria,” Experimental Cell Research, vol. 313, no. 12, pp. 2634–2650, 2007.
[58]  J. Onishi, M. K. Roy, L. R. Juneja, Y. Watanabe, and Y. Tamai, “A lactoferrin-derived peptide with cationic residues concentrated in a region of its helical structure induces necrotic cell death in a leukemic cell line (HL-60),” Journal of Peptide Science, vol. 14, no. 9, pp. 1032–1038, 2008.
[59]  S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts,” Experimental and Molecular Pathology, vol. 88, no. 3, pp. 371–375, 2010.
[60]  J. S. Mader, D. Smyth, J. Marshall, and D. W. Hoskin, “Bovine lactoferricin inhibits basic fibroblast growth factor- and vascular endothelial growth factor165-induced angiogenesis by competing for heparin-like binding sites on endothelial cells,” American Journal of Pathology, vol. 169, no. 5, pp. 1753–1766, 2006.
[61]  D. W. Hoskin and A. Ramamoorthy, “Studies on anticancer activities of antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1778, no. 2, pp. 357–375, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133