全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Arginine and Nitric Oxide Pathways in Obesity-Associated Asthma

DOI: 10.1155/2013/714595

Full-Text   Cite this paper   Add to My Lib

Abstract:

Obesity is a comorbidity that adversely affects asthma severity and control by mechanisms that are not fully understood. This review will discuss evidence supporting a role for nitric oxide (NO) as a potential mechanistic link between obesity and late-onset asthma (>12 years). Several studies have shown that there is an inverse association between increasing body mass index (BMI) and reduced exhaled NO. Newer evidence suggests that a potential explanation for this paradoxical relationship is related to nitric oxide synthase (NOS) uncoupling, which occurs due to an imbalance between L-arginine (NOS substrate) and its endogenous inhibitor, asymmetric di-methyl arginine (ADMA). The review will propose a theoretical framework to understand the relevance of this pathway and how it may differ between early and late-onset obese asthmatics. Finally, the paper will discuss potential new therapeutic approaches, based on these paradigms, for improving the respiratory health of obese subjects with asthma. 1. Introduction Although obesity is associated with less asthma control, greater risk of asthma exacerbations, and reduced inhaled corticosteroid efficacy, whether in fact these conditions are causally related remains uncertain [1]. However, by defining the phenotypical aspects of this relationship, some potential new mechanistic links have been uncovered. Using cluster analyses, obesity has been shown to be an important factor among female patients whose asthma occurs after childhood and have less atopy [2, 3]. This cluster has also been associated with lower airway eosinophils and exhaled nitric oxide (eNO) [3, 4]. The inverse association between body mass index (BMI) and eNO [5] may be explained by an imbalance between L-arginine and one of its methylated products known as asymmetric dimethyl arginine (ADMA) [6, 7]. L-arginine is the substrate that nitric oxide synthase (NOS) uses to generate NO. However, L-arginine is methylated to ADMA, which is an endogenous inhibitor of all NOS isoforms [8]. In addition, ADMA can uncouple NOS and preferentially generate anion superoxide instead of NO [9]. Therefore, conditions favoring a lower L-arginine/ADMA balance would in theory contribute to reducing NO airway bioavailability and increasing airway oxidative stress. This phenomenon has been more extensively studied in the vasculature, as a mechanism leading to endothelial dysfunction or impaired NO-mediated vasodilatation [10]. However, in the lung, the L-arginine/ADMA balance is just beginning to surface as a potential explanation to understand metabolic diseases such

References

[1]  A. E. Dixon, F. Holguin, A. Sood et al., “An official American Thoracic Society Workshop report: obesity and asthma,” Proceedings of the American Thoracic Society, vol. 7, no. 5, pp. 325–335, 2010.
[2]  W. C. Moore, D. A. Meyers, S. E. Wenzel et al., “Identification of asthma phenotypes using cluster analysis in the severe asthma research program,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 4, pp. 315–323, 2010.
[3]  P. Haldar, I. D. Pavord, D. E. Shaw et al., “Cluster analysis and clinical asthma phenotypes,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 3, pp. 218–224, 2008.
[4]  E. R. Sutherland, E. Goleva, T. S. King, et al., “Cluster analysis of obesity and asthma phenotypes,” PLoS One, vol. 7, no. 5, Article ID e36631, 2012.
[5]  S. Komakula, S. Khatri, J. Mermis et al., “Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics,” Respiratory Research, vol. 8, p. 32, 2007.
[6]  F. Holguin, S. A. A. Comhair, S. L. Hazen, W. R. Powers, J. Trudeau, and S. E. Wensel, “Reduced L-arginine/ADMA as a potential mechanism to explain increased symptom severity and reduced atopy in late onset obese asthmatics,” American Journal of Respiratory and Critical Care Medicine, vol. 187, no. 2, pp. 153–159, 2013.
[7]  F. Holguin, S. A. Comhair, S. L. Hazen, et al., “An association between L-arginine/asymmetric dimethyl arginine balance, obesity, and the age of asthma onset phenotype,” American Journal of Respiratory and Critical Care Medicine, vol. 187, no. 2, pp. 153–159, 2013.
[8]  C. T. L. Tran, J. M. Leiper, and P. Vallance, “The DDAH/ADMA/NOS pathway,” Atherosclerosis Supplements, vol. 4, no. 4, pp. 33–40, 2003.
[9]  S. M. Wells and A. Holian, “Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 5, pp. 520–528, 2007.
[10]  A. J. Pope, K. Karuppiah, and A. J. Cardounel, “Role of the PRMT-DDAH-ADMA axis in the regulation of endothelial nitric oxide production,” Pharmacological Research, vol. 60, no. 6, pp. 461–465, 2009.
[11]  S. Ghosh and S. C. Erzurum, “Nitric oxide metabolism in asthma pathophysiology,” Biochim Biophys Acta, vol. 1810, no. 11, pp. 1008–1016, 2011.
[12]  D. Singh, D. Richards, R. G. Knowles et al., “Selective inducible nitric oxide synthase inhibition has no effect on allergen challenge in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 10, pp. 988–993, 2007.
[13]  R. M. Kacmarek, R. Ripple, B. A. Cockrill, K. J. Bloch, W. M. Zapol, and D. C. Johnson, “Inhaled nitric oxide: a bronchodilator in mild asthmatics with methacholine-induced bronchospasm,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 1, pp. 128–135, 1996.
[14]  R. H. Brown, E. A. Zerhouni, and C. A. Hirshman, “Reversal of bronchoconstriction by inhaled nitric oxide: histamine versus methacholine,” American Journal of Respiratory and Critical Care Medicine, vol. 150, no. 1, pp. 233–237, 1994.
[15]  M. Hogman, S. Wei, C. Frostell, H. Arnberg, and G. Hedenstierna, “Effects of inhaled nitric oxide on methacholine-induced bronchoconstriction: a concentration response study in rabbits,” European Respiratory Journal, vol. 7, no. 4, pp. 698–702, 1994.
[16]  B. Gaston, J. M. Drazen, J. Loscalzo, and J. S. Stamler, “The biology of nitrogen oxides in the airways,” American Journal of Respiratory and Critical Care Medicine, vol. 149, no. 2, pp. 538–551, 1994.
[17]  B. Gaston, J. Reilly, J. M. Drazen et al., “Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 10957–10961, 1993.
[18]  H. Grasemann, S. Al-Saleh, J. A. Scott et al., “Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with cystic fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 10, pp. 1363–1368, 2011.
[19]  M. Pifferi, D. Caramella, A. M. Cangiotti, V. Ragazzo, P. Macchia, and A. L. Boner, “Nasal nitric oxide in atypical primary ciliary dyskinesia,” Chest, vol. 131, no. 3, pp. 870–873, 2007.
[20]  R. E. Girgis, M. A. Qureshi, J. Abrams, and P. Swerdlow, “Decreased exhaled nitric oxide in sickle cell disease: relationship with chronic lung involvement,” American Journal of Hematology, vol. 72, no. 3, pp. 177–184, 2003.
[21]  B. J. Nevin and K. J. Broadley, “Nitric oxide in respiratory diseases,” Pharmacology and Therapeutics, vol. 95, no. 3, pp. 259–293, 2002.
[22]  A. Lara, S. B. Khatri, Z. Wang, et al., “Alterations of the arginine metabolome in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 178, no. 7, pp. 673–681, 2008.
[23]  R. C. Benson, K. A. Hardy, and C. R. Morris, “Arginase and arginine dysregulation in asthma,” Journal of Allergy, vol. 2011, Article ID 736319, 12 pages, 2011.
[24]  O. Y. Kim, S. M. Lee, J. H. Chung, H. J. Do, J. Moon, and M. J. Shin, “Arginase I and the very low-density lipoprotein receptor are associated with phenotypic biomarkers for obesity,” Nutrition, vol. 28, no. 6, pp. 635–639, 2012.
[25]  J. H. Lee, G. H. Park, Y. K. Lee, and J. H. Park, “Changes in the arginine methylation of organ proteins during the development of diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 94, no. 1, pp. 111–118, 2011.
[26]  Q. Sun, X. Yang, B. Zhong, et al., “Upregulated protein arginine methyltransferase 1 by IL-4 increases eotaxin-1 expression in airway epithelial cells and participates in antigen-induced pulmonary inflammation in rats,” Journal of Immunology, vol. 188, no. 7, pp. 3506–3512, 2012.
[27]  T. Ahmad, U. Mabalirajan, B. Ghosh, and A. Agrawal, “Altered asymmetric dimethyl arginine metabolism in allergically inflamed mouse lungs,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 1, pp. 3–8, 2010.
[28]  S. M. Wells, M. C. Buford, C. T. Migliaccio, and A. Holian, “Elevated asymmetric dimethylarginine alters lung function and induces collagen deposition in mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 40, no. 2, pp. 179–188, 2009.
[29]  J. A. Scott, M. L. North, M. Rafii, et al., “Asymmetric dimethylarginine is increased in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 7, pp. 779–785, 2011.
[30]  T. A. Nguyen, J. Woo-Park, M. Hess et al., “Assaying all of the nitrogen oxides in breath modifies the interpretation of exhaled nitric oxide,” Vascular Pharmacology, vol. 43, no. 6, pp. 379–384, 2005.
[31]  R. Fernandez-Boyanapalli, E. Goleva, C. Kolakowski, et al., “Obesity impairs apoptotic cell clearance in asthma,” Journal of Allergy and Clinical Immunology, vol. 131, no. 4, pp. 1041–1047, 2013.
[32]  F. Holguin and A. Fitzpatrick, “Obesity, asthma, and oxidative stress,” Journal of Applied Physiology, vol. 108, no. 3, pp. 754–759, 2010.
[33]  A. Sood, C. Qualls, A. Arynchyn et al., “Obesity-asthma association: is it explained by systemic oxidant stress?” Chest, vol. 136, no. 4, pp. 1055–1062, 2009.
[34]  N. L. Lugogo, J. W. Hollingsworth, D. L. Howell, et al., “Alveolar macrophages from overweight/obese subjects with asthma demonstrate a proinflammatory phenotype,” American Journal of Respiratory and Critical Care Medicine, vol. 186, no. 5, pp. 404–411, 2012.
[35]  S. E. Wenzel, “Asthma phenotypes: the evolution from clinical to molecular approaches,” Nature Medicine, vol. 18, no. 5, pp. 716–725, 2012.
[36]  I. Abuzayan and S. W. Turner, “Changes in exhaled nitric oxide after ingestion of L-arginine in children: a pilot study,” Pediatric Pulmonology, vol. 45, no. 3, pp. 236–240, 2010.
[37]  U. Mabalirajan, T. Ahmad, G. D. Leishangthem et al., “Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma,” Journal of Allergy and Clinical Immunology, vol. 125, no. 3, pp. 626–635, 2010.
[38]  S. A. Kharitonov, G. Lubec, B. Lubec, M. Hjelm, and P. J. Barnes, “L-Arginine increases exhaled nitric oxide in normal human subjects,” Clinical Science, vol. 88, no. 2, pp. 135–139, 1995.
[39]  J. K. Mansoor, B. M. Morrissey, W. F. Walby et al., “L-arginine supplementation enhances exhaled NO, breath condensate VEGF, and headache at 4342 m,” High Altitude Medicine and Biology, vol. 6, no. 4, pp. 289–300, 2005.
[40]  E. Schwedhelm, R. Maas, R. Freese et al., “Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism,” British Journal of Clinical Pharmacology, vol. 65, no. 1, pp. 51–59, 2008.
[41]  H. W. de Gouw, M. B. Verbruggen, I. M. Twiss, and P. J. Sterk, “Effect of oral L-arginine on airway hyperresponsiveness to histamine in asthma,” Thorax, vol. 54, no. 11, pp. 1033–1035, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133