W. W. Busse, “The relationship of airway hyperresponsiveness and airway inflammation: airway hyperresponsiveness in asthma: its measurement and clinical significance,” Chest, vol. 138, no. 2, supplement, pp. 4S–10S, 2010.
[2]
J. L. Black, R. A. Panettieri Jr., A. Banerjee, and P. Berger, “Airway smooth muscle in asthma: just a target for bronchodilation?” Clinics In Chest Medicine, vol. 33, pp. 543–558, 2012.
[3]
C. Morin, S. Fortin, A. M. Cantin, and E. Rousseau, “Docosahexaenoic acid derivative prevents inflammation and hyperreactivity in lung: implication of PKC-Potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase of 17 kD in asthma,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, pp. 366–375, 2011.
[4]
D. Jain, S. Keslacy, O. Tliba et al., “Essential role of IFNβ and CD38 in TNFα-induced airway smooth muscle hyper-responsiveness,” Immunobiology, vol. 213, no. 6, pp. 499–509, 2008.
[5]
D. B. Wright, T. Trian, S. Siddiqui et al., “Phenotype modulation of airway smooth muscle in asthma,” Pulmonary Pharmacology and Therapeutics, vol. 26, no. 1, pp. 42–49, 2013.
[6]
J. J. Fredberg, D. Inouye, B. Miller et al., “Airway smooth muscle, tidal stretches, and dynamically determined contractile states,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 6, pp. 1752–1759, 1997.
[7]
S. J. Gunst, “Contractile force of canine airway smooth muscle during cyclical length changes,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 55, no. 3, pp. 759–769, 1983.