全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Relationship between Serum and Brain Carotenoids, -Tocopherol, and Retinol Concentrations and Cognitive Performance in the Oldest Old from the Georgia Centenarian Study

DOI: 10.1155/2013/951786

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oxidative stress is involved in age-related cognitive decline. The dietary antioxidants, carotenoids, tocopherols, and vitamin A may play a role in the prevention or delay in cognitive decline. In this study, sera were obtained from 78 octogenarians and 220 centenarians from the Georgia Centenarian Study. Brain tissues were obtained from 47 centenarian decedents. Samples were analyzed for carotenoids, -tocopherol, and retinol using HPLC. Analyte concentrations were compared with cognitive tests designed to evaluate global cognition, dementia, depression and cognitive domains (memory, processing speed, attention, and executive functioning). Serum lutein, zeaxanthin, and -carotene concentrations were most consistently related to better cognition ( ) in the whole population and in the centenarians. Only serum lutein was significantly related to better cognition in the octogenarians. In brain, lutein and -carotene were related to cognition with lutein being consistently associated with a range of measures. There were fewer significant relationships for -tocopherol and a negative relationship between brain retinol concentrations and delayed recognition. These findings suggest that the status of certain carotenoids in the old may reflect their cognitive function. The protective effect may not be related to an antioxidant effect given that -tocopherol was less related to cognition than these carotenoids. 1. Introduction Cognitive decline in the elderly is a significant public health issue. It has been estimated that the incidence of mild cognitive impairment (MCI) is approximately 19% in those younger than 75 years and 29% in those older than 85 years [1]. Further, 13% of people aged 65 years and older are afflicted with Alzheimer’s disease. Studies in centenarians have reported considerable dementia, ranging from 42 to 100% [2, 3]. The number of individuals so affected is likely to increase given that the number of people over 65 years is rising. As with most age-related diseases, the most cost effective way to combat disease is through prevention. One possible strategy is nutrition intervention [4]. Fruit and vegetable intake has been associated with cognitive function [5–7]. For example, in a study of 13,388 women, it was found that total vegetable intake was significantly associated with reduced cognitive decline [8]. The strongest association was with greater intake of green leafy and cruciferous vegetables. Fruits and vegetables are major dietary sources of carotenoids. Carotenoids are a class of naturally occurring pigments that are synthesized by

References

[1]  O. L. Lopez, W. J. Jagust, S. T. DeKosky et al., “Prevalence and classification of mild cognitive impairment in the cardiovascular health study cognition study,” Archives of Neurology, vol. 60, no. 10, pp. 1385–1389, 2003.
[2]  Y. Gondo and L. W. Poon, “Cognitive function of Centenarians and its influence on longevity,” Annual Review of Gerontology and Geriatrics, vol. 27, pp. 129–149, 2007.
[3]  L. S. Miller, M. B. Mitchell, J. L. Woodard, A. Davey, P. Martin, and L. W. Poon, “Cognitive performance in centenarians and the oldest old: norms from the georgia centenarian study,” Aging, Neuropsychology, and Cognition, vol. 17, no. 5, pp. 575–590, 2010.
[4]  Alzheimer’s Association 2010 Alzheimer’s Disease Facts and Figures, Alzheimer's Associaton National Office, Chicago, Ill, USA, 2010.
[5]  M. C. Morris, D. A. Evans, C. C. Tangney, J. L. Bienias, and R. S. Wilson, “Associations of vegetable and fruit consumption with age-related cognitive change,” Neurology, vol. 67, no. 8, pp. 1370–1376, 2006.
[6]  L. Lee, S. A. Kang, H. O. Lee et al., “Relationships between dietary intake and cognitive function level in Korean elderly people,” Public Health, vol. 115, no. 2, pp. 133–138, 2001.
[7]  R. M. Ortega, A. M. Requejo, P. Andrés et al., “Dietary intake and cognitive function in a group of elderly people,” American Journal of Clinical Nutrition, vol. 66, no. 4, pp. 803–809, 1997.
[8]  J. H. Kang, A. Ascherio, and F. Grodstein, “Fruit and vegetable consumption and cognitive decline in aging women,” Annals of Neurology, vol. 57, no. 5, pp. 713–720, 2005.
[9]  J. H. Kang and F. Grodstein, “Plasma carotenoids and tocopherols and cognitive function: a prospective study,” Neurobiology of Aging, vol. 29, no. 9, pp. 1394–1403, 2008.
[10]  P. Rinaldi, M. C. Polidori, A. Metastasio et al., “Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease,” Neurobiology of Aging, vol. 24, no. 7, pp. 915–919, 2003.
[11]  J. N. Keller, F. A. Schmitt, S. W. Scheff et al., “Evidence of increased oxidative damage in subjects with mild cognitive impairment,” Neurology, vol. 64, no. 7, pp. 1152–1156, 2005.
[12]  E. Tarkowski, N. Andreasen, A. Tarkowski, and K. Blennow, “Intrathecal inflammation precedes development of Alzheimer's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 74, no. 9, pp. 1200–1205, 2003.
[13]  C. E. Teunissen, M. P. J. Van Boxtel, H. Bosma et al., “Inflammation markers in relation to cognition in a healthy aging population,” Journal of Neuroimmunology, vol. 134, no. 1-2, pp. 142–150, 2003.
[14]  M. J. Engelhart, M. I. Geerlings, J. Meijer et al., “Inflammatory proteins in plasma and the risk of dementia: the Rotterdam Study,” Archives of Neurology, vol. 61, no. 5, pp. 668–672, 2004.
[15]  M. A. Pappolla, M. A. Smith, T. Bryant-Thomas et al., “Cholesterol, oxidative stress, and Alzheimer's disease: expanding the horizons of pathogenesis,” Free Radical Biology and Medicine, vol. 33, no. 2, pp. 173–181, 2002.
[16]  T. Wyss-Coray, “Inflammation in Alzheimer disease: driving force, bystander or beneficial response?” Nature Medicine, vol. 12, no. 9, pp. 1005–1015, 2006.
[17]  D. Praticò, “Alzheimer's disease and oxygen radicals: new insights,” Biochemical Pharmacology, vol. 63, no. 4, pp. 563–567, 2002.
[18]  D. Praticò and J. Q. Trojanowski, “Inflammatory hypotheses: novel mechanisms of Alzheimer's neurodegeneration and new therapeutic targets?” Neurobiology of Aging, vol. 21, no. 3, pp. 441–445, 2000.
[19]  P. L. McGeer, E. G. McGeer, and K. Yasojima, “Alzheimer disease and neuroinflammation,” Journal of Neural Transmission, Supplement, no. 59, pp. 53–57, 2000.
[20]  G. Ravaglia, P. Forti, F. Maioli et al., “Homocysteine and folate as risk factors for dementia and Alzheimer disease,” American Journal of Clinical Nutrition, vol. 82, no. 3, pp. 636–643, 2005.
[21]  L. W. Poon, M. Jazwinski, R. Green, et al., “Methodological consideration in studying centenarians: lessons learned from the Georgia Centenarian Studies,” in Annual Review of Gerontology and Geriatrics, L. W. Poon and T. T. Perls, Eds., pp. 231–264, Springer, New York, NY, USA, 2007.
[22]  E. J. Johnson, K. McDonald, S. M. Caldarella, H. Y. Chung, A. M. Troen, and D. M. Snodderly, “Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women,” Nutritional Neuroscience, vol. 11, no. 2, pp. 75–83, 2008.
[23]  N. E. Craft, T. B. Haitema, K. M. Garnett, K. A. Fitch, and C. K. Dorey, “Carotenoid, tocopherol, and retinol concentrations in elderly human brain,” Journal of Nutrition, Health and Aging, vol. 8, no. 3, pp. 156–162, 2004.
[24]  E. J. Johnson, H. Y. Chung, S. M. Caldarella, and D. Max Snodderly, “The influence of supplemental lutein and docosahexaenoic acid on serum, lipoproteins, and macular pigmentation,” American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1521–1529, 2008.
[25]  J. H. Park, H. J. Hwang, M. K. Kim, and Y. C. Lee-Kim, “Con antioxidant vitamin status of the second generation rat brain sections,” Korean Journal of Nutrition, vol. 34, pp. 754–761, 2001.
[26]  R. Vishwanathan, M. Neuringer, D. M. Snodderly, W. Schalch, and E. J. Johnson, “Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates,” Nutritional Neuroscience, vol. 16, no. 1, pp. 21–29, 2013.
[27]  J. I. Sheikh and J. A. Yesavage, “Geriatric Depression Scale (GDS): recent evidence and development of a shorter version,” Clinical Gerontologist, vol. 5, no. 1-2, pp. 165–173, 1986.
[28]  M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini mental state’. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[29]  B. Reisberg, S. H. Ferris, M. J. De Leon, and T. Crook, “The global deterioration scale for assessment of primary degenerative dementia,” American Journal of Psychiatry, vol. 139, no. 9, pp. 1136–1139, 1982.
[30]  J. Saxton, K. L. McGonigle-Gibson, A. A. Swihart, V. J. Miller, and F. Boller, “Assessment of the severly impaired patient: description and validation of a new neuropsychological test battery,” Psychological Assessment, vol. 2, no. 3, pp. 298–303, 1990.
[31]  P. A. Fuld, Fuld Object Memory Evaluation Instruction Manual, Stoetling, Wood Dale, Ill, USA, 1981.
[32]  D. Wechsler, Wechsler Adult Intelligence Scale-III, The Psychological Corporation, San Antonio, Tex, USA, 1997.
[33]  J. Grigsby, K. Kaye, and L. J. Robbins, “Reliabilities, norms and factor structure of the Behavioral Dyscontrol Scale,” Perceptual and Motor Skills, vol. 74, no. 3, pp. 883–892, 1992.
[34]  A. Benton and K. Hamsler, Multilingual Aphasia Examination, University of Iowa, Iowa City, Iowa, USA, 1997.
[35]  R. C. Atkinson and R. M. Shiffrin, “The control of short-term memory,” Scientific American, vol. 225, no. 2, pp. 82–90, 1971.
[36]  M. J. Chandler, L. H. Lacritz, L. S. Hynan et al., “A total score for the CERAD neuropsychological battery,” Neurology, vol. 65, no. 1, pp. 102–106, 2005.
[37]  K. A. Welsh-Bohmer and R. C. Mohs, “Neuropsychological assessment of Alzheimer's disease,” Neurology, vol. 49, no. 3, pp. S11–S13, 1997.
[38]  K. Shaw, M. Gearing, A. Davey et al., “Successful recruitment of centenarians for post-mortem brain donation: results from the Georgia Centenarian Study,” Journal of Bioscience and Medicine, vol. 2, no. 1, pp. 1–6, 2012.
[39]  S. H. Ferris, T. Crook, C. Flicker, B. Reisberg, and R. T. Bartus, “Assessing cognitive impairment and evaluating treatment effects: psychometric performance test,” in Handbook For Clinical Memory Assessment of Older Adults, L. S. Poon, Ed., pp. 139–148, American Psychological Association, Washington, DC, USA, 1986.
[40]  R. Letz, NES2 User's Manual (version 4.4), Neurobehavioral Systems, Winchester, Mass, USA, 1991.
[41]  B. Johansson and S. H. Sarit, “Early cognitive markers of the incidence of dementia and mortality: a longitudinal population based study of the oldest old,” International Journal of Geriatric Psychiatry, vol. 12, pp. 53–59, 1997.
[42]  M. Payton, K. M. Riggs, A. Spiro, S. T. Weiss, and H. Hu, “Relations of bone and blood lead to cognitive function: the VA normative aging study,” Neurotoxicology and Teratology, vol. 20, no. 1, pp. 19–27, 1998.
[43]  E. D. Bigler and D. F. Tate, “Brain volume, intracranial volume, and dementia,” Investigative Radiology, vol. 36, no. 9, pp. 539–546, 2001.
[44]  V. Haroutunian, L. B. Hoffman, and M. S. Beeri, “Is there a neuropathology difference between mild cognitive impairment and dementia?” Dialogues in Clinical Neuroscience, vol. 11, no. 2, pp. 171–179, 2009.
[45]  W. J. Perrig, P. Perrig, and H. B. St?helin, “The relation between antioxidants and memory performance in the old and very old,” Journal of the American Geriatrics Society, vol. 45, no. 6, pp. 718–724, 1997.
[46]  J. Warsama Jama, L. J. Launer, J. C. M. Witteman et al., “Dietary antioxidants and cognitive function in a population-based sample of older persons: the Rotterdam study,” American Journal of Epidemiology, vol. 144, no. 3, pp. 275–280, 1996.
[47]  S. L. Gray, J. T. Hanlon, L. R. Landerman, M. Artz, K. E. Schmader, and G. G. Fillenbaum, “Is antioxidant use protective of cognitive function in the community-dwelling elderly?” American Journal Geriatric Pharmacotherapy, vol. 1, no. 1, pp. 3–10, 2003.
[48]  A. Smith, R. Clark, D. Nutt, J. Haller, S. Hayward, and K. Perry, “Anti-oxidant vitamins and mental performance of the elderly,” Human Psychopharmacology, vol. 14, pp. 459–471, 1999.
[49]  N. T. Akbaraly, H. Faure, V. Gourlet, A. Favier, and C. Berr, “Plasma carotenoid levels and cognitive performance in an elderly population: results of the EVA Study,” Journals of Gerontology A, vol. 62, no. 3, pp. 308–316, 2007.
[50]  M. C. Morris, D. A. Evans, J. L. Bienias et al., “Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study,” Journal of the American Medical Association, vol. 287, no. 24, pp. 3230–3237, 2002.
[51]  K. Yaffe, T. E. Clemons, W. L. McBee, and A. S. Lindblad, “Impact of antioxidants, zinc, and copper on cognition in the elderly: a randomized, controlled trial,” Neurology, vol. 63, no. 9, pp. 1705–1707, 2004.
[52]  P. Mecocci, M. Cristina Polidori, A. Cherubini et al., “Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease,” Archives of Neurology, vol. 59, no. 5, pp. 794–798, 2002.
[53]  http://fnic.nal.usda.gov/.
[54]  D. M. Snodderly, “Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins,” American Journal of Clinical Nutrition, vol. 62, no. 6, pp. 1448S–1461S, 1995.
[55]  A. A. Woodall, G. Britton, and M. J. Jackson, “Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability,” Biochimica et Biophysica Acta, vol. 1336, no. 3, pp. 575–586, 1997.
[56]  A. A. Woodall, S. W. M. Lee, R. J. Weesie, M. J. Jackson, and G. Britton, “Oxidation of carotenoids by free radicals: relationship between structure and reactivity,” Biochimica et Biophysica Acta, vol. 1336, no. 1, pp. 33–42, 1997.
[57]  W. Stahl, A. Junghans, B. De Boer, E. S. Driomina, K. Briviba, and H. Sies, “Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein,” FEBS Letters, vol. 427, no. 2, pp. 305–308, 1998.
[58]  W. Stahl and H. Sies, “Antioxidant activity of carotenoids,” Molecular Aspects of Medicine, vol. 24, no. 6, pp. 345–351, 2003.
[59]  W. I. Gruszecki, “Carotenoid orientation: role in membrane stabilization,” in Carotenoids in Health and Disease, N. I. Krinsky, S. T. Mayne, and H. Sies, Eds., pp. 151–163, Marcel Dekker, New York, NY, USA, 2004.
[60]  W. Stahl and H. Sies, “Effects of carotenoids and retinoids on gap junctional communication,” BioFactors, vol. 15, no. 2-4, pp. 95–98, 2001.
[61]  B. R. Hammond and B. R. Wooten, “CFF thresholds: relation to macular pigment optical density,” Ophthalmic and Physiological Optics, vol. 25, no. 4, pp. 315–319, 2005.
[62]  L. M. Renzi and B. R. Hammond, “The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision,” Ophthalmic and Physiological Optics, vol. 30, no. 4, pp. 351–357, 2010.
[63]  L. M. Renzi and B. R. Hammond, “The effect of macular pigment on heterochromatic luminance contrast,” Experimental Eye Research, vol. 91, no. 6, pp. 896–900, 2010.
[64]  S. B. Kritchevsky, A. J. Bush, M. Pahor, and M. D. Gross, “Serum carotenoids and markers of inflammation in nonsmokers,” American Journal of Epidemiology, vol. 152, no. 11, pp. 1065–1071, 2000.
[65]  E. J. Johnson, “Obesity, lutein metabolism, and age-related macular degeneration: a web of connections,” Nutrition Reviews, vol. 63, no. 1, pp. 9–15, 2005.
[66]  A. Schuitemaker, M. G. Dik, R. Veerhuis et al., “Inflammatory markers in AD and MCI patients with different biomarker profiles,” Neurobiology of Aging, vol. 30, no. 11, pp. 1885–1889, 2009.
[67]  Alzheimer's Association 2010 Alzheimer's Disease Facts and Figures, Alzheimer's Association National Office, Chicago, Ill, USA, 2010.
[68]  F. Grodstein, J. H. Kang, R. J. Glynn, N. R. Cook, and J. M. Gaziano, “A randomized trial of beta carotene supplementation and cognitive function in men: the physicians' health study II,” Archives of Internal Medicine, vol. 167, no. 20, pp. 2184–2190, 2007.
[69]  J. H. Kang, N. R. Cook, J. E. Manson, J. E. Buring, C. M. Albert, and F. Grodstein, “Vitamin E, Vitamin C, Beta carotene, and cognitive function among women with or at risk of cardiovascular disease: the women's antioxidant and cardiovascular study,” Circulation, vol. 119, no. 21, pp. 2772–2780, 2009.
[70]  A. B. Mendelsohn, S. H. Belle, G. P. Stoehr, and M. Ganguli, “Use of antioxidant supplements and its association with cognitive function in a rural elderly cohort: the movies project,” American Journal of Epidemiology, vol. 148, no. 1, pp. 38–44, 1998.
[71]  E. J. Johnson, “Human studies on bioavailability and serum response of carotenoids,” in CRC Handbook of Antioxidants, E. Cadenas and L. Packer, Eds., pp. 265–277, Marcel Dekker, New York, NY, USA, 2nd edition, 2001.
[72]  B. R. Hammond, E. J. Johnson, R. M. Russell, et al., “Dietary modification of human macular pigment density,” Investigative Ophthalmology & Visual Science, vol. 38, pp. 1795–1801, 1997.
[73]  E. J. Johnson, B. R. Hammond, K. J. Yeum et al., “Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density,” American Journal of Clinical Nutrition, vol. 71, no. 6, pp. 1555–1562, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133