Cross-sectional age-related differences in flexibility of older adults aged 55–86 years of varying activity levels were examined. Shoulder abduction and hip flexion flexibility measurements were obtained from 436 individuals (205 men, years; 231 women, years). Total physical activity was assessed using the Minnesota Leisure-Time Physical Activity Questionnaire. Shoulder abduction showed a significant decline averaging 5?degrees/decade in men and 6?degrees/decade in women. Piecewise linear regression showed an accelerated decline in men starting at the age of 71 years of 0.80?degrees/year, whereas in women the onset of decline (0.74?degrees/year) was 63 years. Men and women showed a significant decline in hip flexion (men: 6?degrees/decade; women: 7?degrees/decade). Piecewise linear regression revealed a rate of decline of 1.16?degrees/year beginning at 71 years in men and in women a single linear decline of 0.66?degrees/year. Multiple regression analysis showed that age and physical activity accounted for only 9% of the variance in hip flexion in women and 10% in men, with age but not physical activity remaining significant. Similarly for shoulder abduction, age was significant but not physical activity, in a model that described 8% of the variance for both sexes. 1. Introduction As indicated in a recent systematic review by our group [1], there is conflicting information regarding both the relationship between flexibility training interventions and functional outcomes and the relationship between improved flexibility and daily functioning; health benefits have not yet been established. The comparison of studies in this area to provide a prescription of the flexibility is complicated by the variety of limb ranges of motion studied, testing procedures utilized, and methods of assessing physical activity levels. Furthermore, this component of physical health has been somewhat neglected or forgotten in the current literature despite the lack of evidence for recommendations of the amount and type of flexibility needed for health in older adults. Further, despite this lack of a synthesis of the literature to support the recommendation of the inclusion of a flexibility component to older adult exercise programs, many older adult activity programs place a considerable emphasis on flexibility. The present study attempts to add additional insight to this area by presenting the relationship between declines in flexibility across age and functional outcomes in a large sample of individuals representing the older adult age range. Joint flexibility may decrease
References
[1]
L. Stathokostas, R. M. D. Little, A. A. Vandervoort, and D. H. Paterson, “Flexibility training and functional ability in older adults: a systematic review,” Journal of Aging Research, vol. 2012, Article ID 306818, 2012.
[2]
K. E. Roach and T. P. Miles, “Normal hip and knee active range of motion: the relationship to age,” Physical Therapy, vol. 71, no. 9, pp. 656–665, 1991.
[3]
H. Nonaka, K. Mita, M. Watakabe et al., “Age-related changes in the interactive mobility of the hip and knee joints: a geometrical analysis,” Gait and Posture, vol. 15, no. 3, pp. 236–243, 2002.
[4]
M. Shields, M. S. Tremblay, M. Laviolette, C. L. Craig, I. Janssen, and S. C. Gorber, “Fitness of Canadian adults: results from the 2007–2009 Canadian health measures survey,” Health Reports, vol. 21, no. 1, pp. 21–35, 2010.
[5]
W. W. Spiriduso, K. Francis, and P. MacRae, “Physical development and decline,” in Physical Dimensions of Aging, W. W. Spiriduso, Ed., Human Kinetics, Champaign, Ill, USA, 2nd edition, 2005.
[6]
J. R. Leighton, “An instrument and technic for the measurement of range of joint motion,” Archives of physical medicine and rehabilitation, vol. 36, no. 9, pp. 571–578, 1955.
[7]
A. R. Folsom, D. R. Jacobs Jr., C. J. Caspersen, O. Gomez-Marin, and J. Knudsen, “Test-retest reliability of the Minnesota leisure time physical activity questionnaire,” Journal of Chronic Diseases, vol. 39, no. 7, pp. 505–511, 1986.
[8]
J. E. Himann, D. A. Cunningham, P. A. Rechnitzer, and D. H. Paterson, “Age-related changes in speed of walking,” Medicine and Science in Sports and Exercise, vol. 20, no. 2, pp. 161–166, 1988.
[9]
C. L. Rice, D. A. Cunningham, D. H. Paterson, and P. A. Rechnitzer, “Strength in an elderly population,” Archives of Physical Medicine and Rehabilitation, vol. 70, no. 5, pp. 391–397, 1989.
[10]
S. M. Hunt, S. P. McKenna, J. McEwen, J. Williams, and E. Papp, “The Nottingham health profile: subjective health status and medical consultations,” Social Science and Medicine A, vol. 15, no. 3, part 1, pp. 221–229, 1981.
[11]
J. J. Koval, N. A. Ecclestone, D. H. Paterson, B. Brown, D. A. Cunningham, and P. A. Rechnitzer, “Response rates in a survey of physical capacity among older persons,” Journals of Gerontology, vol. 47, no. 3, pp. S140–S147, 1992.
[12]
E. J. Bassey, K. Morgan, H. M. Dallosso, and S. B. J. Ebrahim, “Flexibility of the shoulder joint measured as range of abduction in a large representative sample of men and women over 65 years of age,” European Journal of Applied Physiology and Occupational Physiology, vol. 58, no. 4, pp. 353–360, 1989.
[13]
R. D. Bell and T. B. Hoshizaki, “Relationships of age and sex with range of motion of seventeen joint actions in humans,” Canadian Journal of Applied Sport Sciences, vol. 6, no. 4, pp. 202–206, 1981.
[14]
R. G. McCulloch, D. J. Clark, I. Pike, and Y. M. Slobodian, “Gender specific trends in fitness and anthropometric parameters in a selected Saskatchewan sample, aged 65-75 years,” Canadian Journal on Aging, vol. 13, no. 1, pp. 30–40, 1994.
[15]
K. Chakravarty and M. Webley, “Shoulder joint movement and its relationship to disability in the elderly,” Journal of Rheumatology, vol. 20, no. 8, pp. 1359–1361, 1993.
[16]
R. E. Rikli and C. J. Jones, “Functional fitness normative scores for community-residing older adults, ages 60–94,” Journal of Aging and Physical Activity, vol. 7, no. 2, pp. 162–181, 1999.
[17]
J. A. Kalscheur, P. S. Costello, and L. J. Emery, “Gender differences in range of motion in older adults,” Physical and Occupational Therapy in Geriatrics, vol. 22, no. 1, pp. 77–89, 2003.
[18]
G. van Herp, P. Rowe, P. Salter, and J. P. Paul, “Three-dimensional lumbar spinal kinematic: a study of range of movement in 100 healthy subjects aged 20 to 60+ years,” Rheumatology, vol. 39, no. 12, pp. 1337–1340, 2000.
[19]
N. Doriot and X. Wang, “Effects of age and gender on maximum voluntary range of motion of the upper body joints,” Ergonomics, vol. 49, no. 3, pp. 269–281, 2006.
[20]
J. M. Walker, D. Sue, and N. Miles-Elkousy, “Active mobility of the extremities in older subjects,” Physical Therapy, vol. 64, no. 6, pp. 919–923, 1984.
[21]
D. K. Einkauf, M. L. Gohdes, G. M. Jensen, and M. J. Jewell, “Changes in spinal mobility with increasing age in women,” Physical Therapy, vol. 67, no. 3, pp. 370–375, 1987.
[22]
B. James and A. W. Parker, “Active and passive mobility of lower limb joints in elderly men and women,” The American Journal of Physical Medicine and Rehabilitation, vol. 68, no. 4, pp. 162–167, 1989.
[23]
R. E. Rikli and C. J. Jones, “Functional fitness normative scores for community-residing older adults, ages 60–94,” Journal of Aging and Physical Activity, vol. 7, no. 2, pp. 162–181, 1999.
[24]
S. Morini, A. Bassi, C. Cerulli, A. Marinozzi, and M. Ripani, “Hip and knee joints flexibility in young and elderly people: effect of physical activity in the elderly,” Biology of Sport, vol. 21, no. 1, pp. 25–37, 2004.
[25]
J. E. Misner, B. H. Massey, M. Bemben, S. Going, and J. Patrick, “Long-term effects of exercise on the range of motion of aging women,” Journal of Orthopaedic and Sports Physical Therapy, vol. 16, no. 1, pp. 37–42, 1992.
[26]
M. C. Morey, P. A. Cowper, J. R. Feussner et al., “Two-year trends in physical performance following supervised exercise among community-dwelling older veterans,” Journal of the American Geriatrics Society, vol. 39, no. 10, pp. 986–992, 1991.
[27]
C. L. Hubley-Kozey, J. C. Wall, and D. B. Hogan, “Effects of a general exercise program on passive hip, knee, and ankle range of motion of older women,” Topics in Geriatric Rehabilitation, vol. 10, no. 3, pp. 33–44, 1995.
[28]
J. M. Miotto, W. J. Chodzko-Zajko, J. L. Reich, and M. M. Supler, “Reliability and validity of the fullerton functional fitness test: an independent replication study,” Journal of Aging and Physical Activity, vol. 7, no. 4, pp. 339–353, 1999.
[29]
R. Rikli and S. Busch, “Motor performance of women as a function of age and physical activity level,” Journals of Gerontology, vol. 41, no. 5, pp. 645–649, 1986.
[30]
L. E. Voorrips, K. A. P. M. Lemmink, M. J. G. van Heuvelen, P. Bult, and W. A. van Staveren, “The physical condition of elderly women differing in habitual physical activity,” Medicine and Science in Sports and Exercise, vol. 25, no. 10, pp. 1152–1157, 1993.
[31]
C. Lan, S. Chen, and J. Lai, “Changes of aerobic capacity, fat ratio and flexibility in older TCC practitioners: a five-year follow-up,” The American Journal of Chinese Medicine, vol. 36, no. 6, pp. 1041–1050, 2008.
[32]
A. A. Vandervoort, B. M. Chesworth, D. A. Cunningham, D. H. Paterson, P. A. Rechnitzer, and J. J. Koval, “Age and sex effects on mobility of the human ankle,” Journals of Gerontology, vol. 47, no. 1, pp. M17–M21, 1992.
[33]
D. A. Cunningham, D. H. Paterson, J. E. Himann, and P. A. Rechnitzer, “Determinants of independence in the elderly,” Canadian Journal of Applied Physiology, vol. 18, no. 3, pp. 243–254, 1993.
[34]
K. Tainaka, T. Takizawa, S. Katamoto, and J. Aoki, “Six-year prospective study of physical fitness and incidence of disability among community-dwelling Japanese elderly women,” Geriatrics and Gerontology International, vol. 9, no. 1, pp. 21–28, 2009.
[35]
E. M. Badley, S. Wagstaff, and P. H. N. Wood, “Measures of functional ability (disability) in arthritis in relation to impairment of range of joint movement,” Annals of the Rheumatic Diseases, vol. 43, no. 4, pp. 563–569, 1984.
[36]
J. M. Fabre, R. H. Wood, K. E. Cherry et al., “Age-related deterioration in flexibility is associated with health-related quality of life in nonagenarians,” Journal of Geriatric Physical Therapy, vol. 30, no. 1, pp. 16–22, 2007.