Introduction. Low serum vitamin D levels are associated with increased postural sway. Vitamin D varies seasonally. This study investigates whether postural sway varies seasonally and is associated with serum vitamin D and falls. Methods. In a longitudinal observational study, eighty-eight independently mobile community-dwelling older adults (69.7 7.6 years) were evaluated on five occasions over one year, measuring postural sway (force platform), vitamin D levels, fall incidence, and causes and adverse outcomes. Mixed-methods Poisson regression was used to determine associations between measures. Results. Postural sway did not vary over the year. Vitamin D levels varied seasonally ( ), peaking in summer. Incidence of falls ( ) and injurious falls ( ) were lower in spring, with the highest fall rate at the end of autumn. Postural sway was not related to vitamin D ( ) or fall rates, but it was associated with fall injuries (IRR 1.59 (CI 1.14 to 2.24, ). Conclusions. Postural sway remained stable across the year while vitamin D varied seasonally. Participants with high values for postural sway demonstrated higher rates of injurious falls. This study provides important evidence for clinicians and researchers providing interventions measuring balance outcomes across seasons. 1. Introduction Balance impairment is an important fall-risk factor [1], and increases in range of postural sway in the mediolateral direction in older adults are associated with increased fall-risk and rates [2]. Postural sway has been shown in older adults to be strongly related to other measures of balance [3]. Multivariate analysis reveals serum vitamin D levels as an independent variable associated with postural sway [4]. In individuals with suboptimal levels of vitamin D, balance and strength improve after supplementation [5], in particular postural sway [6]. Epidemiological studies have shown that vitamin D levels show seasonal variation [7, 8]. Lowest levels of serum vitamin D are recorded towards the end of winter, approximately four weeks after the shortest day of the year [8]. Overall, vitamin D supplementation did not reduce rate of falls (RaR 1.00, 95% CI 0.90 to 1.11; seven trials; 9324 participants) or risk of falling (RR 0.96, 95% CI 0.89 to 1.03; 13 trials; 26, 747 participants) but may do so in people with lower vitamin D levels before treatment [9]. Older adults are at risk for lower levels of serum vitamin D because of age-related changes in UVB absorption and skin capacity to synthesize vitamin D, reduction in activation in the kidneys, and reduced expression of
References
[1]
L. Rubenstein, “Falls in older people: epidemiology, risk factors and strategies for prevention,” Age and Ageing, vol. 35, pp. 37–41, 2006.
[2]
A. Bergland, G.-B. Jarnlo, and K. Laake, “Predictors of falls in the elderly by location,” Aging, vol. 15, no. 1, pp. 43–50, 2003.
[3]
Y. Lajoie and S. P. Gallagher, “Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers,” Archives of Gerontology and Geriatrics, vol. 38, no. 1, pp. 11–26, 2004.
[4]
J. K. Dhesi, L. M. Bearne, C. Moniz et al., “Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with vitamin D status,” Journal of Bone and Mineral Research, vol. 17, no. 5, pp. 891–897, 2002.
[5]
S. W. Muir and M. Montero-Odasso, “Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis,” Journal of the American Geriatrics Society, vol. 59, no. 12, pp. 2291–2300, 2011.
[6]
J. K. Dhesi, S. H. D. Jackson, L. M. Bearne et al., “Vitamin D supplementation improves neuromuscular function in older people who fall,” Age and Ageing, vol. 33, no. 6, pp. 589–595, 2004.
[7]
I. A. F. van der Mei, A.-L. Ponsonby, O. Engelsen et al., “The high prevalence of vitamin D insufficiency across Australian populations is only partly explained by season and latitude,” Environmental Health Perspectives, vol. 115, no. 8, pp. 1132–1139, 2007.
[8]
J. A. Pasco, M. J. Henry, M. A. Kotowicz et al., “Seasonal periodicity of serum vitamin D and parathyroid hormone, bone resorption, and fractures: the Geelong Osteoporosis Study,” Journal of Bone and Mineral Research, vol. 19, no. 5, pp. 752–758, 2004.
[9]
L. D. Gillespie, M. C. Robertson, W. J. Gillespie et al., “Interventions for preventing falls in older people living in the community,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD007146, 2008.
[10]
S. Pajala, P. Era, M. Koskenvuo, J. Kaprio, T. T?rm?kangas, and T. Rantanen, “Force platform balance measures as predictors of indoor and outdoor falls in community-dwelling women aged 63–76 years,” Journals of Gerontology A, vol. 63, no. 2, pp. 171–178, 2008.
[11]
C. Annweiler, M. Montero-Odasso, A. M. Schott, G. Berrut, B. Fantino, and O. Beauchet, “Fall prevention and vitamin D in the elderly: an overview of the key role of the non-bone effects,” Journal of Neuro-engineering and Rehabilitation, vol. 7, no. 1, article 50, 2010.
[12]
M. L. Bird, K. D. Hill, I. K. Robertson, et al., “Serum [25(OH)D] status, ankle strength and activity show seasonal variation in older adults: relevance for winter falls in higher latitudes,” Age and Ageing, vol. 42, no. 2, pp. 181–185, 2013.
[13]
S. Mirchandani, G. B. Aharonoff, R. Hiebert, E. L. Capla, J. D. Zuckerman, and K. J. Koval, “The effects of weather and seasonality on hip fracture incidence in older adults,” Orthopedics, vol. 28, no. 2, pp. 149–155, 2005.
[14]
P.-Y. Yeung, P.-H. Chau, J. Woo, V. W.-T. Yim, and T. H. Rainer, “Higher incidence of falls in winter among older people in Hong Kong,” Journal of Clinical Gerontology and Geriatrics, vol. 2, no. 1, pp. 13–16, 2011.
[15]
A. J. Campbell, G. F. S. Spears, M. J. Borrie, and J. L. Fitzgerald, “Falls, elderly women and the cold,” Gerontology, vol. 34, no. 4, pp. 205–208, 1988.
[16]
J. K. Pittaway, K. D. K. Ahuja, J. M. Beckett, et al., “Make vitamin D while the sun shines, take supplements when t doesn't: a longitudinal, observational study of older adults in Tasmania, Australia,” PLoS ONE, vol. 8, no. 3, Article ID e59063, 2013.
[17]
M.-L. Bird, K. Hill, M. Ball, and A. D. Williams, “Effects of resistance- and flexibility-exercise interventions on balance and related measures in older adults,” Journal of Aging and Physical Activity, vol. 17, no. 4, pp. 444–454, 2009.
B. E. Maki, P. J. Holliday, and A. K. Topper, “A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population,” Journals of Gerontology, vol. 49, no. 2, pp. M72–M84, 1994.
[20]
M. A. Hughes, P. W. Duncan, D. K. Rose, J. M. Chandler, and S. A. Studenski, “The relationship of postural sway to sensorimotor function, functional performance, and disability in the elderly,” Archives of Physical Medicine and Rehabilitation, vol. 77, no. 6, pp. 567–572, 1996.
[21]
K. Hill, J. Schwarz, L. Flicker, and S. Carroll, “Falls among healthy, community-dwelling, older women: a prospective study of frequency, circumstances, consequences and prediction accuracy,” Australian and New Zealand Journal of Public Health, vol. 23, no. 1, pp. 41–48, 1999.
[22]
M. Pfeifer, B. Begerow, H. W. Minne, C. Abrams, D. Nachtigall, and C. Hansen, “Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women,” Journal of Bone and Mineral Research, vol. 15, no. 6, pp. 1113–1118, 2000.
[23]
W. P. Berg, H. M. Alessio, E. M. Mills, and C. Tong, “Circumstances and consequences of falls in independent community-dwelling older adults,” Age and Ageing, vol. 26, no. 4, pp. 261–268, 1997.
[24]
H. A. Bischoff-Ferrari, B. Dawson-Hughes, H. B. Staehelin et al., “Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials,” British Medical Journal, vol. 339, Article ID b3692, 2009.
[25]
H. A. Bischoff-Ferrari, J. E. Orav, J. A. Barrett, and J. A. Baron, “Effect of seasonality and weather on fracture risk in individuals 65 years and older,” Osteoporosis International, vol. 18, no. 9, pp. 1225–1233, 2007.