Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1) what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2) what is the evidence demonstrating that robotic devices are effective in enabling independent living in community dwelling older people? Following database searches for relevant literature an initial yield of 161 articles was obtained. Titles and abstracts of articles were then reviewed by 2 independent people to determine suitability for inclusion. Forty-two articles met the criteria for question 1. Of these, 4 articles met the criteria for question 2. Results showed that robotics is currently available to assist older healthy people and people with disabilities to remain independent and to monitor their safety and social connectedness. Most studies were conducted in laboratories and hospital clinics. Currently limited evidence demonstrates that robots can be used to enable people to remain living at home, although this is an emerging smart technology that is rapidly evolving. 1. Introduction Throughout the world rapid population ageing is occurring, with a large proportion of older adults preferring to stay living at home [1]. Most older people experience one to three chronic diseases [2] and, in very advanced age, frailty, disability, and social isolation are common. At the same time there are increasing demands on health service providers due to the low availability of home and community services, low uptake of e-health and smart technologies by healthcare professionals, and an ageing health workforce [3]. Although many older people express their desire to stay in the familiar social environment of their own home [4], many cannot do so due to impairments, immobility and social isolation. Many older people who live at home are at high risk of falls and injuries and report difficulty accessing health care services when they need them [5]. As previously discussed by Rowe and Kahn [6] the definition of successful aging requires three pillars. Firstly, there is a low probably of disease and/or disability from disease; secondly a high cognitive and physical functioning capacity; and three, the combination of the first two with an active engagement in life. In affecting successful aging, particularly with the nexus to an active
References
[1]
United Nations, World Population Prospects: The 2006 Revision, United Nations, New York, NY, USA, 2007.
[2]
Chronic Diseases, Australian Institute of Health and Welfare, http://www.aihw.gov.au/chronic-diseases/.
[3]
M. E. Morris, E. Ozanne, K. Miller, N. Santamaria, A. J. Pearce, C. Said, et al., Smart Technologies for Older People: A Systematic Literature Review of Smart Technologies That Promote Health and Wellbeing of Older People Living at Home, Institute for a Broadband-Enabled Socity, Melbourne, Australia, 2012.
[4]
M. A. Groves and V. F. Wilson, “To move or not to move? Factors influencing the housing choice of elderly persons,” Journal of Housing for the Elderly, vol. 10, pp. 33–47, 1992.
[5]
A. Shumway-Cook, A. M. Ciol, J. Hoffman, J. B. Dudgeon, K. Yorkston, and L. Chan, “Falls in the medicare population: incidence, associated factors, and on health care,” Physical Therapy, vol. 89, no. 4, pp. 324–332, 2009.
[6]
J. W. Rowe and R. L. Kahn, “Successful aging,” The Gerontologist, vol. 37, no. 4, pp. 433–440, 1997.
[7]
C. Kuzma, “The human touch,” Science and Spirit, vol. 4, pp. 15–17, 2006.
[8]
L. Carelli, A. Gaggioli, G. Pioggia, F. de Rossi, and G. Riva, “Affective robot for elderly assistance,” Studies in Health Technology and Informatics, vol. 144, pp. 44–49, 2009.
[9]
S. Thiel, D. H?be, and M. Block, “Co-operative robot teams in a hospital environment,” in Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS'09), pp. 843–847, Shanghai, China, November 2009.
[10]
E. Broadbent, I. H. Kuo, Y. I. Lee et al., “Attitudes and reactions to a healthcare robot,” Telemedicine Journal and E-Health, vol. 16, no. 5, pp. 608–613, 2010.
[11]
C. Ray, F. Mondada, and R. Siegwart, “What do people expect from robots?” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'08), pp. 3816–3821, Nice, France, September 2008.
[12]
M. Kassler, “Robotics for health care: a review of the literature,” Robotica, vol. 11, no. 6, pp. 495–516, 1993.
[13]
A. J. Rentschler, R. A. Cooper, B. Blasch, and M. L. Boninger, “Intelligent walkers for the elderly: performance and safety testing of VA-PAMAID robotic walker,” Journal of Rehabilitation Research and Development, vol. 40, no. 5, pp. 423–431, 2003.
[14]
J. Broekens, M. Herrink, and H. Rosendal, “Assistive social robots in elderly care: a review,” Gerontechnology, vol. 8, no. 2, pp. 94–103, 2009.
NHMRC, NHMRC levels of evidence and grades for recommendations for developers of guidelines, 2009, https://www.nhmrc.gov.au/_files_nhmrc/file/guidelines/developers/nhmrc_levels_grades_evidence_120423.pdf.
[17]
M. L. Aisen, H. I. Krebs, N. Hogan, F. McDowell, and B. T. Volpe, “The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke,” Archives of Neurology, vol. 54, no. 4, pp. 443–446, 1997.
[18]
J. S. Morvan, J. P. Guichard, and V. Torossian, “Technical aids for the physically handicapped: a psychological study of the master robot,” International Journal of Rehabilitation Research, vol. 20, no. 2, pp. 193–197, 1997.
[19]
H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, “Robot-aided neurorehabilitation,” IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 1, pp. 75–87, 1998.
[20]
J. A. Cozens, “Robotic assistance of an active upper limb exercise in neurologically impaired patients,” IEEE Transactions on Rehabilitation Engineering, vol. 7, no. 2, pp. 254–256, 1999.
[21]
B. T. Volpe, H. I. Krebs, N. Hogan, L. Edelsteinn, C. M. Diels, and M. L. Aisen, “Robot training enhanced motor outcome in patients with stroke maintained over 3 years,” Neurology, vol. 53, no. 8, pp. 1874–1876, 1999.
[22]
D. J. Reinkensmeyer, J. P. A. Dewald, and W. Z. Rymer, “Guidance-based quantification of arm impairment following brain injury: a pilot study,” IEEE Transactions on Rehabilitation Engineering, vol. 7, no. 1, pp. 1–11, 1999.
[23]
C. G. Burgar, P. S. Lum, P. C. Shor, and H. F. M. van der Loos, “Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience,” Journal of Rehabilitation Research and Development, vol. 37, no. 6, pp. 663–673, 2000.
[24]
B. T. Volpe, H. I. Krebs, N. Hogan, L. Edelstein, C. Diels, and M. Aisen, “A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation,” Neurology, vol. 54, no. 10, pp. 1938–1944, 2000.
[25]
S. Jezernik, R. Sch?rer, G. Colombo, and M. Morari, “Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals,” Spinal Cord, vol. 41, no. 12, pp. 657–666, 2003.
[26]
R. Loureiro, F. Amirabdollahian, M. Topping, B. Driessen, and W. Harwin, “Upper limb robot mediated stroke therapy—GENTLE/s approach,” Autonomous Robots, vol. 15, no. 1, pp. 35–51, 2003.
[27]
P. Winchester, R. McColl, R. Querry et al., “Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury,” Neurorehabilitation and Neural Repair, vol. 19, no. 4, pp. 313–324, 2005.
[28]
M. Spenko, H. Yu, and S. Dubowsky, “Robotic personal aids for mobility and monitoring for the elderly,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 3, pp. 344–351, 2006.
[29]
J. F. Israel, D. D. Campbell, J. H. Kahn, and T. G. Hornby, “Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury,” Physical Therapy, vol. 86, no. 11, pp. 1466–1478, 2006.
[30]
J. Mehrholz, C. Werner, J. Kugler, and M. Pohl, “Electromechanical-assisted training for walking after stroke,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD006185, 2007.
[31]
E. Rocon, J. M. Belda-Lois, A. F. Ruiz, M. Manto, J. C. Moreno, and J. L. Pons, “Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 1, pp. 367–378, 2007.
[32]
S. Saeki, Y. Matsushima, and K. Hachisuka, “Cortical activation during robotic therapy for a severely affected arm in a chronic stroke patient: a case report,” Journal of UOEH, vol. 30, no. 2, pp. 159–165, 2008.
[33]
J. Hidler, L. F. Hamm, A. Lichy, and S. L. Groah, “Automating activity-based interventions: the role of robotics,” Journal of Rehabilitation Research and Development, vol. 45, no. 2, pp. 337–344, 2008.
[34]
T. W. J. Janssen and D. D. Pringle, “Effects of modified electrical stimulation-induced leg cycle ergometer training for individuals with spinal cord injury,” Journal of Rehabilitation Research and Development, vol. 45, no. 6, pp. 819–830, 2008.
[35]
H. I. Krebs, S. Mernoff, S. E. Fasoli, R. Hughes, J. Stein, and N. Hogan, “A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study,” NeuroRehabilitation, vol. 23, no. 1, pp. 81–87, 2008.
[36]
J. Patton, D. A. Brown, M. Peshkin et al., “KineAssist: design and development of a robotic overground gait and balance therapy device,” Topics in Stroke Rehabilitation, vol. 15, no. 2, pp. 131–139, 2008.
[37]
R. G. Querry, F. Pacheco, T. Annaswamy, L. Goetz, P. K. Winchester, and K. E. Tansey, “Synchronous stimulation and monitoring of soleus H reflex during robotic body weight-supported ambulation in subjects with spinal cord injury,” Journal of Rehabilitation Research and Development, vol. 45, no. 1, pp. 175–186, 2008.
[38]
A. J. Rentschler, R. Simpson, R. A. Cooper, and M. L. Boninger, “Clinical evaluation of Guido robotic walker,” Journal of Rehabilitation Research and Development, vol. 45, no. 9, pp. 1281–1294, 2008.
[39]
F. Galluppi, C. Urdiales, I. Sanchez-Tato, F. Sandoval, and M. O. Belardinelli, “A study on a shared control navigation system: human/robot collaboration for assisting people in mobility,” Cognitive Processing, vol. 10, supplement 2, pp. S215–S218, 2009.
[40]
H. Shimada, T. Hirata, Y. Kimura et al., “Effects of a robotic walking exercise on walking performance in community-dwelling elderly adults,” Geriatrics & Gerontology International, vol. 9, no. 4, pp. 372–381, 2009.
[41]
N. A. Flinn, J. L. Smith, C. J. Tripp, and M. W. White, “Effects of robotic-aided rehabilitation on recovery of upper extremity function in chronic stroke: a single case study,” Occupational Therapy International, vol. 16, no. 3-4, pp. 232–243, 2009.
[42]
Q. Zeng, E. Burdet, and C. L. Teo, “Evaluation of a collaborative wheelchair system in cerebral palsy and traumatic brain injury users,” Neurorehabilitation and Neural Repair, vol. 23, no. 5, pp. 494–504, 2009.
[43]
A. C. Lo, P. D. Guarino, L. G. Richards et al., “Robot-assisted therapy for long-term upper-limb impairment after stroke,” The New England Journal of Medicine, vol. 362, no. 19, pp. 1772–1783, 2010.
[44]
A. Frizera Neto, J. A. Gallego, E. Rocon, J. L. Pons, and R. Ceres, “Extraction of user's navigation commands from upper body force interaction in walker assisted gait,” BioMedical Engineering Online, vol. 9, article 37, 2010.
[45]
V. Sharma, R. Simpson, E. Lopresti, and M. Schmeler, “Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals,” Journal of Rehabilitation Research and Development, vol. 47, no. 9, pp. 877–890, 2010.
[46]
J. R. Wolpaw, “Brain-computer interface research comes of age: traditional assumptions meet emerging realities,” Journal of Motor Behavior, vol. 42, no. 6, pp. 351–353, 2010.
[47]
J. A. Galvez, A. Budovitch, S. J. Harkema, and D. J. Reinkensmeyer, “Trainer variability during step training after spinal cord injury: implications for robotic gait-training device design,” Journal of Rehabilitation Research and Development, vol. 48, no. 2, pp. 147–160, 2011.
[48]
M. Turiel, S. Sitia, S. Cicala et al., “Robotic treadmill training improves cardiovascular function in spinal cord injury patients,” International Journal of Cardiology, vol. 149, no. 3, pp. 323–329, 2011.
[49]
I. Schwartz, A. Sajina, M. Neeb, I. Fisher, M. Katz-Luerer, and Z. Meiner, “Locomotor training using a robotic device in patients with subacute spinal cord injury,” Spinal Cord, vol. 49, pp. 1062–1067, 2011.
[50]
S. S. Conroy, J. Whitall, L. Dipietro et al., “Effect of gravity on robot-assisted motor training after chronic stroke: a randomized trial,” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 11, pp. 1754–1761, 2011.
[51]
T. Carlson and Y. Demiris, “Collaborative control for a robotic wheelchair: evaluation of performance, attention, and workload,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 42, no. 3, Article ID Article number6135817, pp. 876–888, 2012.
[52]
S. H. Downs and N. Black, “The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions,” Journal of Epidemiology and Community Health, vol. 52, no. 6, pp. 377–384, 1998.
[53]
R. Frietas Jr., “Comprehensive nanorobotic control of human morbidity and aging,” in The Future of Aging, G. M. Fahey, M. D. West, L. S. Coles, and S. B. Harris, Eds., chapter 23, Spinger, Dordrecht, The Netherlands, 2010.
[54]
Department of Health and Ageing, Living longer, living better, 2012, http://www.health.gov.au/internet/main/publishing.nsf/Content/ageing-hacc-living.htm.
[55]
Department of Broadband, Communications and the Digital Economy, National digital economy strategy: leveraging the national broadband network to drive Australia's digital productivity, 2011, http://www.nbn.gov.au/files/2011/05/National_Digital_Economy_Strategy.pdf.
[56]
Academy of Technological Sciences and Engineering, Smart technology for healthy longevity, 2010, http://www.atse.org.au/news/featured-articles/155-smart-tech-for-health-longevity/.