This study examined whether regular swimming in older adults was related to better cognitive functioning and whether there were any global or selective positive effects of this physical activity (PA) on cognition. The cognitive performances of three groups of sixteen volunteer participants (young adults, sedentary older adults, and older adults who regularly practice swimming) were evaluated using a multitask approach. All participants performed a battery of ten tasks: two reaction time tasks assessing information processing speed and eight experimental tasks assessing three executive functions (EFs), (behavioral inhibition, working memory updating, and cognitive flexibility). The results showed that young adults performed significantly better than older adults on all examined cognitive functions. However, in older adults, regular swimming was related to better performance on the three EFs, but not on information processing speed. More precisely, five experimental tasks out of the eight tapping EFs were shown to be sensitive to positive effects from swimming practice. Finally, the demonstrated benefits of swimming on EFs were not necessarily linked to better cardiorespiratory fitness. The present findings illustrate the validity of using a multitask approach in examining the potential benefits of regular PA on cognitive aging. 1. Introduction The growth of the proportion of the population aged 65 and older in the industrialized world, as well as in developing countries, has profound implications for public health and the economic costs of medical care. Cerebral and cognitive decline, as a function of aging, represents a predominant cause of autonomy loss in aging populations. According to the prefrontal-executive theory [1], executive functions (EFs) and their underpinning prefrontal and frontal brain structures are particularly sensitive to the effects of normal and pathological aging [2, 3]. Therefore, the preservation of these brain areas and their associated cognitive functions is of particular importance. Chronic physical activity (PA), aimed at improving cardiorespiratory health, has been proposed to be a good, practical, and powerful candidate to overcome cerebral and behavioral declines [4–6]. Accordingly, the principal aim of the present study was to examine the potential benefits of an understudied form of PA—regular swimming (one of the most popular and accessible forms of PA for older adults)—on EF performance in a population aged 65 to 80 years old. Executive functions involve higher-order functions of control and coordination allowing
References
[1]
R. L. West, “An application of prefrontal cortex function theory to cognitive aging,” Psychological Bulletin, vol. 120, no. 2, pp. 272–292, 1996.
[2]
C. T. Albinet, G. Boucard, C. A. Bouquet, and M. Audiffren, “Processing speed and executive functions in cognitive aging: how to disentangle their mutual relationship?” Brain and Cognition, vol. 79, no. 1, pp. 1–11, 2012.
[3]
L. H. Phillips and J. D. Henry, “Adult aging and executive functioning,” in Executive Functions and the Frontal Lobes: A Lifespan Perspective, V. Anderson, R. Jacobs, and P. J. Anderson, Eds., pp. 57–79, Taylor & Francis, New York, NY, USA, 2008.
[4]
M. Audiffren, N. André, and C. T. Albinet, “Effects of chronic exercise on cognitive functions in older adults: assessment and prospects,” Revue de Neuropsychologie, vol. 3, no. 4, pp. 207–225, 2011.
[5]
C. H. Hillman, K. I. Erickson, and A. F. Kramer, “Be smart, exercise your heart: exercise effects on brain and cognition,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 58–65, 2008.
[6]
A. F. Kramer and K. I. Erickson, “Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function,” Trends in Cognitive Sciences, vol. 11, no. 8, pp. 342–348, 2007.
[7]
V. Anderson, R. Jacobs, and P. J. Anderson, Eds., Executive Functions and the Frontal Lobes: A Lifespan Perspective, Taylor & Francis, New York, NY, USA, 2008.
[8]
M. B. Jurado and M. Rosselli, “The elusive nature of executive functions: a review of our current understanding,” Neuropsychology Review, vol. 17, no. 3, pp. 213–233, 2007.
[9]
A. Miyake, N. P. Friedman, M. J. Emerson, A. H. Witzki, A. Howerter, and T. D. Wager, “The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis,” Cognitive Psychology, vol. 41, no. 1, pp. 49–100, 2000.
[10]
J. E. Fisk and C. A. Sharp, “Age-related impairment in executive functioning: updating, inhibition, shifting, and access,” Journal of Clinical and Experimental Neuropsychology, vol. 26, no. 7, pp. 874–890, 2004.
[11]
L. Vaughan and K. Giovanello, “Executive function in daily life: age-related influences of executive processes on instrumental activities of daily living,” Psychology and Aging, vol. 25, no. 2, pp. 343–355, 2010.
[12]
T. A. Salthouse, “The processing-speed theory of adult age differences in cognition,” Psychological Review, vol. 103, no. 3, pp. 403–428, 1996.
[13]
S. Colcombe and A. F. Kramer, “Fitness effects on the cognitive function of older adults: a meta-analytic study,” Psychological Science, vol. 14, no. 2, pp. 125–130, 2003.
[14]
S. J. Colcombe, K. I. Erickson, N. Raz et al., “Aerobic fitness reduces brain tissue loss in aging humans,” Journals of Gerontology A, vol. 58, no. 2, pp. 176–180, 2003.
[15]
C. Voelcker-Rehage, B. Godde, and U. M. Staudinger, “Physical and motor fitness are both related to cognition in old age,” European Journal of Neuroscience, vol. 31, no. 1, pp. 167–176, 2010.
[16]
L. Fratiglioni, S. Paillard-Borg, and B. Winblad, “An active and socially integrated lifestyle in late life might protect against dementia,” Lancet Neurology, vol. 3, no. 6, pp. 343–353, 2004.
[17]
E. B. Larson, L. Wang, J. D. Bowen et al., “Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older,” Annals of Internal Medicine, vol. 144, no. 2, pp. 73–81, 2006.
[18]
C. T. Albinet, G. Boucard, C. A. Bouquet, and M. Audiffren, “Increased heart rate variability and executive performance after aerobic training in the elderly,” European Journal of Applied Physiology, vol. 109, no. 4, pp. 617–624, 2010.
[19]
S. J. Colcombe, A. F. Kramer, K. I. Erickson et al., “Cardiovascular fitness, cortical plasticity, and aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3316–3321, 2004.
[20]
A. F. Kramer, S. Hahn, N. J. Cohen et al., “Ageing, fitness and neurocognitive function,” Nature, vol. 400, no. 6743, pp. 418–419, 1999.
[21]
A. L. Smiley-Oyen, K. A. Lowry, S. J. Francois, M. L. Kohut, and P. Ekkekakis, “Exercise, fitness, and neurocognitive function in older adults: the "selective improvement" and "cardiovascular fitness" hypotheses,” Annals of Behavioral Medicine, vol. 36, no. 3, pp. 280–291, 2008.
[22]
G. Kemoun, M. Thibaud, N. Roumagne et al., “Effects of a physical training programme on cognitive function and walking efficiency in elderly persons with dementia,” Dementia and Geriatric Cognitive Disorders, vol. 29, no. 2, pp. 109–114, 2010.
[23]
N. T. Lautenschlager, K. L. Cox, L. Flicker et al., “Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1027–1037, 2008.
[24]
C. D. Hall, A. L. Smith, and S. W. Keele, “The impact of aerobic activity on cognitive function in older adults: a new synthesis based on the concept of executive control,” European Journal of Cognitive Psychology, vol. 13, no. 1-2, pp. 279–300, 2001.
[25]
J. L. Etnier, P. M. Nowell, D. M. Landers, and B. A. Sibley, “A meta-regression to examine the relationship between aerobic fitness and cognitive performance,” Brain Research Reviews, vol. 52, no. 1, pp. 119–130, 2006.
[26]
S. J. Colcombe, K. I. Erickson, P. E. Scalf et al., “Aerobic exercise training increases brain volume in aging humans,” Journals of Gerontology A, vol. 61, no. 11, pp. 1166–1170, 2006.
[27]
A. D. Brown, C. A. McMorris, R. S. Longman et al., “Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women,” Neurobiology of Aging, vol. 31, no. 12, pp. 2047–2057, 2010.
[28]
A. C. Pereira, D. E. Huddleston, A. M. Brickman et al., “An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 13, pp. 5638–5643, 2007.
[29]
D. J. Madden, J. A. Blumenthal, P. A. Allen, and C. F. Emery, “Improving aerobic capacity in healthy older adults does not necessarily lead to improved cognitive performance,” Psychology and Aging, vol. 4, no. 3, pp. 307–320, 1989.
[30]
T. Liu-Ambrose, L. S. Nagamatsu, P. Graf, B. L. Beattie, M. C. Ashe, and T. C. Handy, “Resistance training and executive functions: a 12-month randomized controlled trial,” Archives of Internal Medicine, vol. 170, no. 2, pp. 170–178, 2010.
[31]
H. L. Hawkins, A. F. Kramer, and D. Capaldi, “Aging, exercise, and attention,” Psychology and aging, vol. 7, no. 4, pp. 643–653, 1992.
[32]
L. Muller, Participation culturelle et sportive: Tableaux issus de l’enquête PCV de mai 2003, Ministère de la Jeunesse, des Sports et de la Vie Associative, Paris, 2005.
[33]
Y. Katsura, T. Yoshikawa, S. Y. Ueda et al., “Effects of aquatic exercise training using water-resistance equipment in elderly,” European Journal of Applied Physiology, vol. 108, no. 5, pp. 957–964, 2010.
[34]
J. E. Taunton, E. C. Rhodes, L. A. Wolski et al., “Effect of land-based and water-based fitness programs on the cardiovascular fitness, strength and flexibility of women aged 65–75 years,” Gerontology, vol. 42, no. 4, pp. 204–210, 1996.
[35]
M. Bergamin, S. Zanuso, B. A. Alvar, A. Ermolao, and M. Zaccaria, “Is water-based exercise training sufficient to improve physical fitness in the elderly,” European Review of Aging and Physical Activity, vol. 9, no. 2, pp. 129–141, 2012.
[36]
K. Hauer, N. Specht, M. Schuler, P. B?rtsch, and P. Oster, “Intensive physical training in geriatric patients after severe falls and hip surgery,” Age and Ageing, vol. 31, no. 1, pp. 49–57, 2002.
[37]
M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini mental state’: a practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[38]
H. Robert, J. M. Casillas, M. Iskandar et al., “Le Score d'activité physique de Dijon: reproductibilité et corrélations avec l'aptitude physique de sujets sains agés,” Annales de Réadaptation et de Médecine Physique, vol. 47, no. 8, pp. 546–554, 2004.
[39]
G. M. Kline, J. P. Porcari, and R. Hintermeister, “Estimation of VO2max from a one-mile track walk, gender, age, and body weight,” Medicine and Science in Sports and Exercise, vol. 19, no. 3, pp. 253–259, 1987.
[40]
E. McAuley, A. N. Szabo, E. L. Mailey et al., “Non-exercise estimated cardiorespiratory fitness: associations with brain structure, cognition, and memory complaints in older adults,” Mental Health and Physical Activity, vol. 4, no. 1, pp. 5–11, 2011.
[41]
G. D. Logan, W. B. Cowan, and K. A. Davis, “On the ability to inhibit simple and choice reaction time responses: a model and a method,” Journal of Experimental Psychology, vol. 10, no. 2, pp. 276–291, 1984.
[42]
J. Cohen, Statistical Power Analysis for the Behavioral Sciences, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 2nd edition, 1988.
[43]
T. A. Salthouse, Theoretical Perspectives on Cognitive Aging, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1991.
[44]
K. W. Schaie and S. L. Willis, Handbook of the Psychology of Aging, vol. 7, Elsevier, Amsterdam, The Netherlands, 2011.
[45]
T. A. Salthouse, T. M. Atkinson, and D. E. Berish, “Executive functioning as a potential mediator of age-related cognitive decline in normal adults,” Journal of Experimental Psychology, vol. 132, no. 4, pp. 566–594, 2003.
[46]
J. Steffener and Y. Stern, “Exploring the neural basis of cognitive reserve in aging,” Biochimica & Biophysica Acta, vol. 1822, no. 3, pp. 467–473, 2012.
[47]
Y. Stern, “Cognitive reserve,” Neuropsychologia, vol. 47, no. 10, pp. 2015–2028, 2009.
[48]
M. Renaud, L. Bherer, and F. Maquestiaux, “A high level of physical fitness is associated with more efficient response preparation in older adults,” Journals of Gerontology B, vol. 65, no. 3, pp. 317–322, 2010.
[49]
W. W. Spirduso, “Reaction and movement time as a function of age and physical activity level,” Journals of Gerontology, vol. 30, no. 4, pp. 435–440, 1975.
[50]
J. A. Blumenthal, C. F. Emery, D. J. Madden et al., “Long-term effects of exercise on psychological functioning in older men and women,” Journals of Gerontology, vol. 46, no. 6, pp. P352–P361, 1991.
[51]
G. K. Boucard, C. T. Albinet, A. Bugaiska, C. Bouquet, D. Clarys, and M. Audiffren, “Impact of physical activity on executive functions in aging: a selective effect on inhibition among old adults,” Journal of Sport and Exercise Psychology, vol. 34, pp. 808–827, 2012.