Lifestyle nonpharmacological interventions can have a deep effect on cognitive aging. We have reviewed the available literature on the effectiveness of physical activity, intellectual stimulation, and socialization on the incidence of dementia and on the course of dementia itself. Even though physical activity appears to be beneficial in both delaying dementia onset and in the course of the disease, more research is needed before intellectual stimulation and socialization can be considered as treatments and prevention of the disease. Through our paper, we found that all three nonpharmacological treatments provide benefits to cognition and overall well-being in patients with age-related cognitive impairments. These interventions may be beneficial in the management of dementia. 1. Introduction Alzheimer’s disease (AD) is a neurodegenerative disorder with devastating consequences [1]. Despite being the most common cause of dementia, affecting approximately 5.4 million Americans [2] and almost 50% of people over the age 85 [3], no cure has yet been discovered. Efforts are also focusing on the development of more effective strategies to slow the progression of AD to increase the quality of life of those affected. Even a two-year delay in disease onset would reduce the prevalence of AD among Americans by two million people within fifty years [4]. If an intervention that delayed the onset of AD by five years had been applied back in 1997, we would have seen a 50% reduction in AD incidence [4]. Research on strategies to slow the development and progression of AD is arguably more important now than ever before, since the number of people with AD is expected to nearly triple over the next forty years [4], and dementia is the most important contributor to disability in the elderly [5]. Among others, three nonpharmacological interventions are particularly relevant as they might positively influence cognition, general functioning, and overall quality of life. These three strategies are physical exercise, intellectual stimulation, and social interaction. While there are studies that evaluate the role of individual and multimodal interventions on AD, there is a lack of literature on the combination of all three. The purpose of this paper is to review key areas of the literature that focus on the effects of physical exercise, intellectual stimulation, and socialization strategies on AD evolution, as they collectively play an important role in the management of Alzheimer’s disease. Physical exercise encapsulates both aerobic exercises (e.g., walking and cycling) and
References
[1]
J. L. Cummings, “Alzheimer's disease,” New England Journal of Medicine, vol. 351, no. 1, pp. 56–67, 2004.
[2]
W. Thies and L. Bleiler, “Alzheimer's disease facts and figures,” Alzheimer's and Dementia, vol. 7, no. 2, pp. 208–244, 2011.
[3]
A. L. Fitzpatrick, L. H. Kuller, D. G. Ives et al., “Incidence and prevalence of dementia in the cardiovascular health study,” Journal of the American Geriatrics Society, vol. 52, no. 2, pp. 195–204, 2004.
[4]
R. Brookmeyer, S. Gray, and C. Kawas, “Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset,” American Journal of Public Health, vol. 88, no. 9, pp. 1337–1342, 1998.
[5]
R. M. Sousa, C. P. Ferri, D. Acosta et al., “Contribution of chronic diseases to disability in elderly people in countries with low and middle incomes: a 10/66 Dementia Research Group population-based survey,” The Lancet, vol. 374, no. 9704, pp. 1821–1830, 2009.
[6]
K. E. Powell, P. D. Thompson, C. J. Caspersen, and J. S. Kendrick, “Physical activity and the incidence of coronary heart disease,” Annual Review of Public Health, vol. 8, pp. 253–287, 1987.
[7]
A. M. Kriska, S. N. Blair, and M. A. Pereira, “The potential role of physical activity in the prevention of non-insulin-dependent diabetes mellitus: the epidemiological evidence,” Exercise and Sport Sciences Reviews, vol. 22, pp. 121–143, 1994.
[8]
S. N. Blair and S. Brodney, “Effects of physical inactivity and obesity on morbidity and mortality: Current evidence and research issues,” Medicine and Science in Sports and Exercise, vol. 31, no. 11, pp. S646–S662, 1999.
[9]
I. M. Lee, “Physical activity and cancer prevention—data from epidemiologic studies,” Medicine and Science in Sports and Exercise, vol. 35, no. 11, pp. 1823–1827, 2003.
[10]
D. Bonaiuti, B. Shea, R. Iovine et al., “Exercise for preventing and treating osteoporosis in postmenopausal women,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD000333, 2002.
[11]
S. N. Blair, N. N. Goodyear, L. W. Gibbons, and K. H. Cooper, “Physical fitness and incidence of hypertension in healthy normotensive men and women,” Journal of the American Medical Association, vol. 252, no. 4, pp. 487–490, 1984.
[12]
A. D. Brown, C. A. McMorris, R. S. Longman et al., “Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women,” Neurobiology of Aging, vol. 31, no. 12, pp. 2047–2057, 2010.
[13]
P. J. Smith, J. A. Blumenthal, B. M. Hoffman et al., “Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials,” Psychosomatic Medicine, vol. 72, no. 3, pp. 239–252, 2010.
[14]
K. I. Erickson and A. F. Kramer, “Aerobic exercise effects on cognitive and neural plasticity in older adults,” British Journal of Sports Medicine, vol. 43, no. 1, pp. 22–24, 2009.
[15]
L. J. Podewils, E. Guallar, L. H. Kuller et al., “Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study,” American Journal of Epidemiology, vol. 161, no. 7, pp. 639–651, 2005.
[16]
D. Laurin, R. Verreault, J. Lindsay, K. MacPherson, and K. Rockwood, “Physical activity and risk of cognitive impairment and dementia in elderly persons,” Archives of Neurology, vol. 58, no. 3, pp. 498–504, 2001.
[17]
E. B. Larson, L. Wang, J. D. Bowen et al., “Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older,” Annals of Internal Medicine, vol. 144, no. 2, pp. 73–81, 2006.
[18]
A. S. Buchman, P. A. Boyle, L. Yu, R. C. Shah, R. S. Wilson, and D. A. Bennett, “Total daily physical activity and the risk of AD and cognitive decline in older adults,” Neurology, vol. 78, no. 17, pp. 1323–1329, 2012.
[19]
N. T. Lautenschlager, K. L. Cox, L. Flicker et al., “Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1027–1037, 2008.
[20]
J. E. Ahlskog, Y. E. Geda, N. R. Graff-Radford, and R. C. Petersen, “Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging,” Mayo Clinic Proceedings, vol. 86, no. 9, pp. 876–884, 2011.
[21]
M. Weih, ü. Degirmenci, S. Kreil, and J. Kornhuber, “Physical activity and alzheimer's disease: a meta-analysis of cohort studies,” The Journal of Gerontopsychology and Geriatric Psychiatry, vol. 23, no. 1, pp. 17–20, 2010.
[22]
L. Palleschi, F. Vetta, E. De Gennaro et al., “Effect of aerobic training on the cognitive performance of elderly patients with senile dementia of Alzheimer type,” Archives of Gerontology and Geriatrics, vol. 22, no. 1, pp. 47–50, 1996.
[23]
G. F. Lindenmuth and B. Moose, “Improving cognitive abilities of elderly Alzheimer's patients with intense exercise therapy,” American Journal of Alzheimer's Care and Related Disorders and Research, vol. 5, no. 1, pp. 31–33, 1990.
[24]
P. Heyn, B. C. Abreu, and K. J. Ottenbacher, “The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 10, pp. 1694–1704, 2004.
[25]
C. A. Alessi, E. Yoon, J. F. Schnelle, N. R. Al-Samanai, and P. A. Cruise, “A randomized trial of a combined physical activity and environmental intervention in nursing home residents: do sleep and agitation improve?” Journal of the American Geriatrics Society, vol. 47, no. 7, pp. 784–791, 1999.
[26]
L. Teri, L. E. Gibbons, S. M. McCurry et al., “Exercise plus behavioral management in patients with Alzheimer disease: a randomized controlled trial,” Journal of the American Medical Association, vol. 290, no. 15, pp. 2015–2022, 2003.
[27]
G. Kemoun, M. Thibaud, N. Roumagne et al., “Effects of a physical training programme on cognitive function and walking efficiency in elderly persons with dementia,” Dementia and Geriatric Cognitive Disorders, vol. 29, no. 2, pp. 109–114, 2010.
[28]
D. K. Miu, S. L. Szeto, and Y. F. Mak, “A randomised controlled trial on the effect of exercise on physical, cognitive and affective function in dementia subjects,” Asian Journal of Gerontology and Geriatrics, vol. 3, no. 1, pp. 8–16, 2008.
[29]
K. E. Roach, R. M. Tappen, N. Kirk-Sanchez, C. L. Williams, and D. Loewenstein, “A randomized controlled trial of an activity specific exercise program for individuals with Alzheimer disease in long-term care settings,” Journal of Geriatric Physical Therapy, vol. 34, no. 2, pp. 50–56, 2011.
[30]
Y. Rolland, F. Pillard, A. Klapouszczak et al., “Exercise program for nursing home residents with Alzheimer's disease: a 1-year randomized, controlled trial,” Journal of the American Geriatrics Society, vol. 55, no. 2, pp. 158–165, 2007.
[31]
M. Steinberg, J. M. Sheppard Leoutsakos, L. J. Podewills, and C. G. Lyketsos, “Evaluation of a home-based exercise program in the treatment of Alzheimer's disease: the Maximizing Independence in Dementia (MIND) study,” International Journal of Geriatric Psychiatry, vol. 24, no. 7, pp. 680–685, 2009.
[32]
M. Venturelli, R. Scarsini, and F. Schena, “Six-month walking program changes cognitive and ADL performance in patients with Alzheimer,” American Journal of Alzheimer's Disease and other Dementias, vol. 26, no. 5, pp. 381–388, 2011.
[33]
A. Vreugdenhil, J. Cannell, A. Davies, and G. Razay, “A community-based exercise programme to improve functional ability in people with Alzheimer's disease: a randomized controlled trial,” Scandinavian Journal of Caring Sciences, vol. 26, no. 1, pp. 12–19, 2012.
[34]
L. Yágüez, K. N. Shaw, R. Morris, and D. Matthews, “The effects on cognitive functions of a movement-based intervention in patients with Alzheimer's type dementia: a pilot study,” International Journal of Geriatric Psychiatry, vol. 26, no. 2, pp. 173–181, 2011.
[35]
R. C. Cassilhas, V. A. R. Viana, V. Grassmann et al., “The impact of resistance exercise on the cognitive function of the elderly,” Medicine and Science in Sports and Exercise, vol. 39, no. 8, pp. 1401–1407, 2007.
[36]
T. Liu-Ambrose, M. G. Donaldson, Y. Ahamed et al., “Otago home-based strength and balance retraining improves executive functioning in older fallers: a randomized controlled trial,” Journal of the American Geriatrics Society, vol. 56, no. 10, pp. 1821–1830, 2008.
[37]
B. S. Oken, D. Zajdel, S. Kishiyama et al., “Randomized, controlled, six-month trial of yoga in healthy seniors: effects on cognition and quality of life,” Alternative Therapies in Health and Medicine, vol. 12, no. 1, pp. 40–47, 2006.
[38]
S. J. Colcombe, K. I. Erickson, P. E. Scalf et al., “Aerobic exercise training increases brain volume in aging humans,” Journals of Gerontology, vol. 61, no. 11, pp. 1166–1170, 2006.
[39]
M. W. Voss, R. S. Prakash, K. I. Erickson, et al., “Plasticity of brain networks in a randomized intervention trial of exercise training in older adults,” Froniers in Aging Neuroscience, vol. 2, p. 32, 2010.
[40]
J. M. Burns, B. B. Cronk, H. S. Anderson et al., “Cardiorespiratory fitness and brain atrophy in early Alzheimer disease,” Neurology, vol. 71, no. 3, pp. 210–216, 2008.
[41]
R. A. Honea, G. P. Thomas, A. Harsha et al., “Cardiorespiratory fitness and preserved medial temporal lobe volume in alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 23, no. 3, pp. 188–197, 2009.
[42]
R. S. Wilson, D. A. Bennett, J. L. Bienias et al., “Cognitive activity and incident AD in a population-based sample of older persons,” Neurology, vol. 59, no. 12, pp. 1910–1914, 2002.
[43]
M. Valenzuela and P. Sachdev, “Can cognitive exercise prevent the onset of dementia? systematic review of randomized clinical trials with longitudinal follow-up,” American Journal of Geriatric Psychiatry, vol. 17, no. 3, pp. 179–187, 2009.
[44]
T. F. Hughes, C. C. H. Chang, J. Vander Bilt, and M. Ganguli, “Engagement in reading and hobbies and risk of incident dementia: the MoVIES project,” American Journal of Alzheimer's Disease and other Dementias, vol. 25, no. 5, pp. 432–438, 2010.
[45]
Y. Stern, “What is cognitive reserve? Theory and research application of the reserve concept,” Journal of the International Neuropsychological Society, vol. 8, no. 3, pp. 448–460, 2002.
[46]
N. Scarmeas and Y. Stern, “Cognitive reserve and lifestyle,” Journal of Clinical and Experimental Neuropsychology, vol. 25, no. 5, pp. 625–633, 2003.
[47]
N. Scarmeas and Y. Stern, “Cognitive reserve: implications for diagnosis and prevention of Alzheimer's disease,” Current Neurology and Neuroscience Reports, vol. 4, no. 5, pp. 374–380, 2004.
[48]
L. Mowszowski, J. Batchelor, and S. L. Naismith, “Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique?” International Psychogeriatrics, vol. 22, no. 4, pp. 537–548, 2010.
[49]
Y. Stern, S. Albert, M. X. Tang, and W. Y. Tsai, “Rate of memory decline in AD is related to education and occupation: cognitive reserve?” Neurology, vol. 53, no. 9, pp. 1942–1947, 1999.
[50]
E. P. Helzner, N. Scarmeas, S. Cosentino, F. Portet, and Y. Stern, “Leisure activity and cognitive decline in incident Alzheimer disease,” Archives of Neurology, vol. 64, no. 12, pp. 1749–1754, 2007.
[51]
K. A. Treiber, M. C. Carlson, C. Corcoran, et al., “Cognitive stimulation and cognitive and functional decline in Alzheimer's disease: the Cache County Dementia Progression Study,” The Journals of Gerontology, Series B, vol. 66, no. 4, pp. 416–425, 2011.
[52]
C. Ballard, Z. Khan, H. Clack, and A. Corbett, “Nonpharmacological treatment of Alzheimer disease,” Canadian Journal of Psychiatry, vol. 56, no. 10, pp. 589–595, 2011.
[53]
F. Yu F, K. M. Rose, S. C. Burgener, et al., “Cognitive training for early-stage Alzheimer's disease and dementia,” Journal of Gerontological Nursing, vol. 35, no. 3, pp. 23–29, 2009.
[54]
A. F. Kurz, S. Leucht, and N. T. Lautenschlager, “The clinical significance of cognition-focused interventions for cognitively impaired older adults: a systematic review of randomized controlled trials,” International Psychogeriatrics, vol. 23, no. 9, pp. 1364–1375, 2011.
[55]
D. I. Sitzer, E. W. Twamley, and D. V. Jeste, “Cognitive training in Alzheimer's disease: a meta-analysis of the literature,” Acta Psychiatrica Scandinavica, vol. 114, no. 2, pp. 75–90, 2006.
[56]
B. Woods, E. Aguirre, A. E. Spector, and M. Orrell, “Cognitive stimulation to improve cognitive functioning in people with dementia,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD005562, 2012.
[57]
A. Spector, L. Thorgrimsen, B. Woods et al., “Efficacy of an evidence-based cognitive stimulation therapy programme for people with dementia: randomised controlled trial,” British Journal of Psychiatry, vol. 183, pp. 248–254, 2003.
[58]
S. B. Chapman, M. F. Weiner, A. Rackley, L. S. Hynan, and J. Zientz, “Effects of cognitive-communication stimulation for Alzheimer's disease patients treated with donepezil,” Journal of Speech, Language, and Hearing Research, vol. 47, no. 5, pp. 1149–1163, 2004.
[59]
V. C. Buschert, U. Friese, S. J. Teipel, et al., “Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer's disease: a pilot study,” Journal of Alzheimer's Disease, vol. 25, no. 4, pp. 679–694, 2011.
[60]
G. Onder, O. Zanetti, E. Giacobini et al., “Reality orientation therapy combined with cholinesterase inhibitors in Alzheimer's disease: randomised controlled trial,” British Journal of Psychiatry, vol. 187, pp. 450–455, 2005.
[61]
A. Spector, S. Davies, B. Woods, and M. Orrell, “Reality orientation for dementia: a systematic review of the evidence of effectiveness from randomized controlled trials,” Gerontologist, vol. 40, no. 2, pp. 206–212, 2000.
[62]
L. Clare and B. Woods, “Cognitive rehabilitation and cognitive training for early-stage Alzheimer's disease and vascular dementia,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD003260, 2008.
[63]
L. Clare, D. E. J. Linden, R. T. Woods et al., “Goal-oriented cognitive rehabilitation for people with early-stage alzheimer disease: a single-blind randomized controlled trial of clinical efficacy,” American Journal of Geriatric Psychiatry, vol. 18, no. 10, pp. 928–939, 2010.
[64]
D. A. Loewenstein, A. Acevedo, S. J. Czaja, and R. Duara, “Cognitive rehabilitation of mildly impaired Alzheimer disease patients on cholinesterase inhibitors,” American Journal of Geriatric Psychiatry, vol. 12, no. 4, pp. 395–402, 2004.
[65]
R. N. Davis, P. J. Massman, and R. S. Doody, “Cognitive intervention in Alzheimer disease: a randomized placebo-controlled study,” Alzheimer Disease and Associated Disorders, vol. 15, no. 1, pp. 1–9, 2001.
[66]
M. P. Quayhagen, M. Quayhagen, R. R. Corbeil et al., “Coping with dementia: evaluation of four nonpharmacologic interventions,” International Psychogeriatrics, vol. 12, no. 2, pp. 249–265, 2000.
[67]
D. C. Koltai, K. A. Welsh-Bohmer, and D. E. Schmechel, “Influence of anosognosia on treatment outcome among dementia patients,” Neuropsychological Rehabilitation, vol. 11, no. 3-4, pp. 455–475, 2001.
[68]
G. W. Small, P. V. Rabins, P. P. Barry et al., “Diagnosis and treatment of Alzheimer disease and related disorders: consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer's Association, and the American Geriatrics Society,” Journal of the American Medical Association, vol. 278, no. 16, pp. 1363–1371, 1997.
[69]
L. J. Thal, “Prevention of Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 20, no. 2, pp. S97–S99, 2006.
[70]
L. P. De Vreese, M. Neri, M. Fioravanti, L. Belloi, and O. Zanetti, “Memory rehabilitation in Alzheimer's disease: a review of progress,” International Journal of Geriatric Psychiatry, vol. 16, no. 8, pp. 794–809, 2001.
[71]
D. A. Cahn-Weiner, P. F. Malloy, G. W. Rebok, and B. R. Ott, “Results of a randomized placebo-controlled study of memory training for mildly impaired Alzheimer's disease patients,” Applied Neuropsychology, vol. 10, no. 4, pp. 215–223, 2003.
[72]
E. Farina, F. Mantovani, R. Fioravanti et al., “Evaluating two group programmes of cognitive training in mild-to-moderate AD: is there any difference between a “global” stimulation and a “cognitive-specific” one?” Aging and Mental Health, vol. 10, no. 3, pp. 211–218, 2006.
[73]
H. MacRae, “Self and other: the importance of social interaction and social relationships in shaping the experience of early-stage Alzheimer's disease,” Journal of Aging Studies, vol. 25, pp. 445–456, 2011.
[74]
L. Fratiglioni, S. Paillard-Borg, and B. Winblad, “An active and socially integrated lifestyle in late life might protect against dementia,” The Lancet Neurology, vol. 3, no. 6, pp. 343–353, 2004.
[75]
K. H. Pitkala, P. Routasalo, H. Kautiainen, H. Sintonen, and R. S. Tilvis, “Effects of socially stimulating group intervention on lonely, older people's cognition: a randomized, controlled trial,” American Journal of Geriatric Psychiatry, vol. 19, no. 7, pp. 654–663, 2011.
[76]
R. S. Wilson, K. R. Krueger, S. E. Arnold et al., “Loneliness and risk of Alzheimer disease,” Archives of General Psychiatry, vol. 64, no. 2, pp. 234–240, 2007.
[77]
H. X. Wang, A. Karp, B. Winblad, and L. Fratiglioni, “Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen Project,” American Journal of Epidemiology, vol. 155, no. 12, pp. 1081–1087, 2002.
[78]
R. P. Friedland, T. Fritsch, K. A. Smyth et al., “Patients with Alzheimer's disease have reduced activities in midlife compared with healthy control-group members,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3440–3445, 2001.
[79]
D. A. Bennett, J. A. Schneider, Y. Tang, S. E. Arnold, and R. S. Wilson, “The effect of social networks on the relation between Alzheimer's disease pathology and level of cognitive function in old people: a longitudinal cohort study,” The Lancet Neurology, vol. 5, no. 5, pp. 406–412, 2006.
[80]
L. Fratiglioni, H. X. Wang, K. Ericsson, M. Maytan, and B. Winblad, “Influence of social network on occurrence of dementia: a community-based longitudinal study,” The Lancet, vol. 355, no. 9212, pp. 1315–1319, 2000.
[81]
H. H. Keller, L. S. Martin, S. Dupuis, R. Genoe, H. G. Edward, and C. Cassolato, “Mealtimes and being connected in the community-based dementia context,” Dementia, vol. 9, no. 2, pp. 191–213, 2010.
[82]
R. G. Logsdon, S. M. McCurry, and L. Teri, “Evidence-based interventions to improve quality of life for individuals with dementia,” Alzheimer's Care Today, vol. 8, no. 4, pp. 309–318, 2007.
[83]
R. G. Logsdon, K. C. Pike, S. M. McCurry et al., “Early-stage memory loss support groups: outcomes from a randomized controlled clinical trial,” Journals of Gerontology, vol. 65, no. 6, pp. 691–697, 2010.
[84]
M. S. Mittelman, S. H. Ferris, E. Shulman et al., “A comprehensive support program: effect on depression in spouse-caregivers of AD patients,” Gerontologist, vol. 35, no. 6, pp. 792–802, 1995.
[85]
M. S. Mittelman, C. Epstein, and A. Pierzchala, Counselling the Alzheimer's Caregiver: A Resource for Health Care Professionals, American Medical Association, Chicago, Ill, USA, 2001.
[86]
M. S. Mittelman, D. L. Roth, D. W. Coon, and W. E. Haley, “Sustained benefit of supportive intervention for depressive symptoms in caregivers of patients with Alzheimer's disease,” American Journal of Psychiatry, vol. 161, no. 5, pp. 850–856, 2004.
[87]
F. G. M. Coelho, L. P. Andrade, R. V. Pedroso, et al., “Multimodal exercise intervention improves frontal cognitive functions and gait in Alzheimer's disease: a controlled trial,” Geriatriatrics and Gerontolology International. In press.
[88]
S. Arkin, “Language-enriched exercise plus socialization slows cognitive decline in Alzheimer's disease,” American Journal of Alzheimer's Disease and other Dementias, vol. 22, no. 1, pp. 62–77, 2007.
[89]
S. C. Burgener, Y. Yang, R. Gilbert, and S. Marsh-Yant, “The effects of a multimodal intervention on outcomes of persons with early-stage dementia,” American Journal of Alzheimer's Disease and other Dementias, vol. 23, no. 4, pp. 382–394, 2008.
[90]
T. Maci, F. Le Pira, G. Quattrocch, S. Di Nuovo, V. Perciavalle, and M. Zappia, “Physical and cognitive stimulation in Alzheimer disease. The GAIA Project: a pilot study,” American Journal of Alzheimers Disease and other Dementias, vol. 27, no. 2, pp. 107–113, 2012.