Bone morphogenetic protein (BMP)-2 plays an important role in morphogenesis in both vertebrates and invertebrates. BMP-2 is one of the most powerful bioactive substances known to induce the osteogenic differentiation of mesenchymal cells. We examined the structural and functional conservation of Pinctada fucata BMP-2 in inducing osteogenesis in the murine mesenchymal stem cells, C3H10T1/2. Exposure of C3H10T1/2 cells to the recombinant mature fragment of Pinctada fucata BMP-2 resulted in osteoblastic differentiation. The sequence, SVPKPCCVPTELSSL, within the C-terminal portion of Pinctada fucata BMP-2, is homologous to the knuckle epitope of human BMP-2. This synthetic polypeptide was able to induce differentiation of C3H10T1/2 along the osteoblastic lineage, as confirmed by an increase in alkaline phosphatase activity, and the accumulation of calcium, as determined by von Kossa staining. Furthermore, using immunohistochemical staining, we observed an increased expression of collagen type I, osteopontin, and osteocalcin, which are known markers of osteogenesis. These results show that BMP-2 is conserved, not only in terms of its homology at the amino acid sequence, but also in terms of driving the formation of hard tissues in vertebrates and invertebrates. 1. Introduction The transforming growth factor-beta (TGF-β) supergene family plays various roles in the regulation of cell growth, cell specialization, and morphogenesis [1, 2]. More than 40 genes have been identified in the mammalian TGF-β family [3], including the bone morphogenetic proteins (BMPs). BMPs are well-known regulators of bone and cartilage formation in vertebrates. The BMPs and their homologs are also involved in the regulation of morphogenesis in the shells of mollusks [4–7]. Hard tissue in invertebrates is equivalent to bone of vertebrates in terms of the organization of accumulated minerals. Although it is to be expected that BMP-2 or -4 participates in the formation of hard tissues such as the shells of mollusks, direct proof has not been reported. Previously, to examine the role of BMP-2 in morphogenesis and hard tissues formation of Pinctada fucata, we cloned the Pinctada fucata BMP-2 (PfBMP-2) gene using DNA obtained by PCR-based genome amplification as the probe [8]. The PfBMP-2 gene was expressed strongly in the inner part of the mantle tissue, corresponding to the nacreous aragonite shell layer. This suggested that BMP-2 has a key role in the nacreous layer formation. Recently, indirect proof that PfBMP-2 participates in the hard tissue formation of P. fucata was reported [9].
References
[1]
R. Derynck and K. Miyazono, “TGF-beta and the TGF-beta family,” in The TGF-Beta Family, R. Derynck and K. Miyazono, Eds., pp. 29–43, Cold Spring Harbor Laboratory Press, New York, NY, USA, 2008.
[2]
R. Derynck and R. J. Akhurst, “Differentiation plasticity regulated by TGF-β family proteins in development and disease,” Nature Cell Biology, vol. 9, no. 9, pp. 1000–1004, 2007.
[3]
Q. Li, J. E. Agno, M. A. Edson, A. K. Nagaraja, T. Nagashima, and M. M. Matzuk, “Transforming growth factor β receptor type 1 is essential for female reproductive tract integrity and function,” PLoS Genetics, vol. 7, Article ID e1002320, 2011.
[4]
A. J. Nederbragt, A. E. van Loon, and W. J. A. G. Dictus, “Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism,” Developmental Biology, vol. 246, no. 2, pp. 341–355, 2002.
[5]
M. Iijima, T. Takeuchi, I. Sarashina, and K. Endo, “Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis,” Development Genes and Evolution, vol. 218, no. 5, pp. 237–251, 2008.
[6]
C. Lelong, M. Mathieu, and P. Favrel, “Structure and expression of mGDF, a new member of the transforming growth factor-β supwrfamily in the bivalve mollusc Crassostrea gigas,” European Journal of Biochemistry, vol. 267, no. 13, pp. 3986–3993, 2000.
[7]
A. Herpin, C. Lelong, T. Becker, F. Rosa, P. Favrel, and C. Cunningham, “Structural and functional evidence for a singular repertoire of BMP receptor signal transducing proteins in the lophotrochozoan Crassostrea gigas suggests a shared ancestral BMP/activin pathway,” FEBS Journal, vol. 272, no. 13, pp. 3424–3440, 2005.
[8]
T. Miyashita, T. Hanashita, M. Toriyama, R. Takagi, T. Akashika, and N. Higashikubo, “Gene cloning and biochemical characterization of the BMP-2 of Pinctada fucata,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 1, pp. 37–47, 2008.
[9]
C. Li, Y. Hu, J. Liang et al., “Calcineurin plays an important role in the shell formation of pearl oyster (Pinctada fucata),” Marine Biotechnology, vol. 12, no. 1, pp. 100–110, 2010.
[10]
L. M. Helvering, R. L. Sharp, X. Ou, and A. G. Geiser, “Regulation of the promoters for the human bone morphogenetic protein 2 and 4 genes,” Gene, vol. 256, no. 1-2, pp. 123–138, 2000.
[11]
M. Tomita, M. I. Reinhold, J. D. Molkentin, and M. C. Naski, “Calcineurin and NFAT4 induce chondrogenesis,” Journal of Biological Chemistry, vol. 277, no. 44, pp. 42214–42218, 2002.
[12]
E. Lopez, B. Vidal, S. Berland, S. Camprasse, G. Camprasse, and C. Silve, “Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro,” Tissue and Cell, vol. 24, no. 5, pp. 667–679, 1992.
[13]
C. Silve, E. Lopez, B. Vidal et al., “Nacre initiates biomineralization by human osteoblasts maintained in vitro,” Calcified Tissue International, vol. 51, no. 5, pp. 363–369, 1992.
[14]
M. Lamghari, M. J. Almeida, S. Berland et al., “Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies,” Bone, vol. 25, no. 1, pp. 91S–94S, 1999.
[15]
H. Liao, H. Mutvei, L. Hammarstr?m, T. Wurtz, and J. Li, “Tissue responses to nacreous implants in rat femur: an in situ hybridization and histochemical study,” Biomaterials, vol. 23, no. 13, pp. 2693–2701, 2002.
[16]
P. Westbroek and F. Marin, “A marriage of bone and nacre,” Nature, vol. 392, no. 6679, pp. 861–862, 1998.
[17]
T. K. Sampath, K. E. Rashka, J. S. Doctor, R. F. Tucker, and F. M. Hoffmann, “Drosophila transforming growth factor β superfamily proteins induce endochondral bone formation in mammals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 6004–6008, 1993.
[18]
M. Pagni and T. Junier, “Dotlet: powerful and easy strategy for pairwise comparisons,” Journal of Cell and Molecular Biology, vol. 7-8, no. 1-2, pp. 81–82, 2010.
[19]
T. Miyashita, K. Hirotaka, and R. Takagi, “Expression and purification of the recombinant mature bone morphogenetic protein-2 of Pinctada fucata in Escherichia coli and comparison of the codon usage,” Memoirs of the School of Biology-Oriented Science and Technology of Kinki University, no. 18, pp. 1–7, 2006.
[20]
C. A. Reznikoff, D. W. Brankow, and C. Heidelberger, “Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division,” Cancer Research, vol. 33, no. 12, pp. 3231–3238, 1973.
[21]
Y. Suzuki, M. Tanihara, K. Suzuki, A. Saitou, and Y. Nishimura, “Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo,” Journal of Biomedical Materials Research, vol. 50, pp. 405–409, 2000.
[22]
A. Saito, Y. Suzuki, S. I. Ogata, C. Ohtsuki, and M. Tanihara, “Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope,” Biochimica et Biophysica Acta, vol. 1651, no. 1-2, pp. 60–67, 2003.
[23]
R. T. Franceschi, “The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment,” Critical Reviews in Oral Biology and Medicine, vol. 10, no. 1, pp. 40–57, 1999.
[24]
J. Frith and P. Genever, “Transcriptional control of mesenchymal stem cell differentiation,” Transfusion Medicine and Hemotherapy, vol. 35, no. 3, pp. 216–227, 2008.
[25]
R. Nishimura, K. Hata, T. Matsubara, M. Wakabayashi, and T. Yoneda, “Regulation of bone and cartilage development by network between BMP signalling and transcription factors,” The Journal of Biochemistry, vol. 151, pp. 247–254, 2012.
[26]
G. Chen, C. Deng, and Y. P. Li, “TGF-β and BMP signaling in osteoblast differentiation and bone formation,” International Journal of Biological Sciences, vol. 8, no. 2, pp. 272–288, 2012.
[27]
A. Ulsamer, M. J. Ortu?o, S. Ruiz et al., “BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38,” Journal of Biological Chemistry, vol. 283, no. 7, pp. 3816–3826, 2008.
[28]
M. H. Lee, Y. J. Kim, W. J. Yoon et al., “Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter,” Journal of Biological Chemistry, vol. 280, no. 42, pp. 35579–35587, 2005.
[29]
T. Komori, “Regulation of osteoblast differentiation by Runx2,” Advances in Experimental Medicine and Biology, vol. 658, pp. 43–49, 2010.
[30]
H. Miyamoto, T. Miyashita, M. Okushima, S. Nakano, T. Morita, and A. Matsushiro, “A carbonic anhydrase from the nacreous layer in oyster pearls,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9657–9660, 1996.
[31]
T. Samata, N. Hayashi, M. Kono, K. Hasegawa, C. Horita, and S. Akera, “A new matrix protein family related to the nacreous layer formation of Pinctada fucata,” FEBS Letters, vol. 462, no. 1-2, pp. 225–229, 1999.
[32]
T. Miyashita, R. Takagi, M. Okushima et al., “Complementary DNA cloning and characterization of Pearlin, a new class of matrix protein in the nacreous layer of oyster pearls,” Marine Biotechnology, vol. 2, no. 5, pp. 409–418, 2000.
[33]
M. Yano, K. Nagai, K. Morimoto, and H. Miyamoto, “A novel nacre protein N19 in the pearl oyster Pinctada fucata,” Biochemical and Biophysical Research Communications, vol. 362, pp. 158–163, 2007.
[34]
M. Suzuki, K. Saruwatari, T. Kogure et al., “An acidic matrix protein, Pif, is a key macromolecule for nacre formation,” Science, vol. 325, no. 5946, pp. 1388–1390, 2009.
[35]
M. Suzuki, E. Murayama, H. Inoue et al., “Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata),” Biochemical Journal, vol. 382, no. 1, pp. 205–213, 2004.
[36]
T. Miyashita, A. Takami, and R. Takagi, “Molecular cloning and characterization of the 5′-flanking regulatory region of the carbonic anhydrase nacrein gene of the pearl oyster Pinctada fucata and its expression,” Biochemical Genetics, vol. 50, no. 9-10, pp. 673–683, 2012.
[37]
E. A. Wang, V. Rosen, J. S. D'Alessandro et al., “Recombinant human bone morphogenetic protein induces bone formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 6, pp. 2220–2224, 1990.
[38]
C. C. Rider and B. Mulloy, “Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists,” Biochemical Journal, vol. 429, no. 1, pp. 1–12, 2010.
[39]
E. Ozkaynak, P. N. J. Schnegelsberg, D. F. Jin et al., “Osteogenic protein-2. A new member of the transforming growth factor-β superfamily expressed early in embryogenesis,” Journal of Biological Chemistry, vol. 267, no. 35, pp. 25220–25227, 1992.
[40]
J. Groppe, K. Rumpel, A. N. Economides, N. Stahl, W. Sebald, and M. Affolter, “Biochemical and biophysical characterization of refolded Drosophila DPP, a homolog of bone morphogenetic proteins 2 and 4,” Journal of Biological Chemistry, vol. 273, no. 44, pp. 29052–29065, 1998.
[41]
J.-J. A. Zhou, Enhancing production of recombinant BMP-2 in mammalian cell culture systems by inhibition of pro-protein cleavage using 9DR peptides [M.S. thesis], University of Toronto, 2008.
[42]
S. Saremba, J. Nickel, A. Seher, A. Kotzsch, W. Sebald, and T. D. Mueller, “Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand,” FEBS Journal, vol. 275, no. 1, pp. 172–183, 2008.