Fasciolosis is water and food borne disease, caused by Fasciola hepatica and F. gigantica. Snail Lymnaea acuminata is an intermediate host of these flukes. Snail control is one of the major methods to reduce the incidences of fasciolosis. Trapping of snails with the help of photo- and chemoattractants for treatment purposes will be a new tool in control program of fasciolosis. The present study shows that maximum numbers of snails were attracted (52 to 60%), when exposed to photo- and chemostimulant simultaneously, rather than when only chemo- (control) (18 to 24%) or photo- (control) (14 to 19%) stimulus was given. Maximum change in AChE activity in nervous tissue was observed when red monochromatic light was used (258.37% of white light control) as opposed to blue (243.44% of white light control) and orange (230.37% of white light control). The exposure of light directly stimulated the photoreceptors in eye which transmit the signals through nerves to the brain and snail response accordingly. In this signal transmission AChE is one of the important enzymes involved in this process. 1. Introduction The fasciolosis is considered as water and food borne disease [1, 2]. Fasciolosis and other food borne trematodiases were added to the list of important helminthiases with a great impact on human development, at the Third Global Meeting of the Partners for Parasite Control, held in WHO Headquarters, Geneva, in November 2004 [3]. Moreover, present climate and global changes appeared to increasingly affect those snail borne helminthiases, which are heavily dependent on the environment for dissemination. Fasciolosis is a good example of an emerging/reemerging parasitic disease in many countries, as a consequence of many phenomena related to both environmental changes and man-made modifications. The Lymnaeidae and Planorbidae are families of snail that serve as intermediate hosts to a large number of species of Fasciola, distributed worldwide. Lymnaeidae serves as an intermediate host of at least 71 trematode species, distributed among 13 families, with the implication for cattle and human health [4]. In Gorakhpur district of eastern part of Uttar Pradesh, India, a survey was conducted by Singh and Agarwal [5] which revealed that 94% buffaloes in local slaughter houses are highly infected by F. gigantica. Snail L. acuminata acts as an intermediate host for this fluke. Annual economic losses caused by this disease are estimated to be US$2 billion, due to damaged livers, reduced milk yield, fertility disorders and reduced meat production [1]. This disease affects
References
[1]
M. S. Mas-Coma, J. G. Esteban, and M. D. Bargues, “Epidemiology of human fascioliasis: a review and proposed new classification,” Bulletin of the World Health Organization, vol. 77, no. 4, pp. 340–346, 1999.
[2]
S. Mas-Coma, M. D. Bargues, and M. A. Valero, “Fascioliasis and other plant-borne trematode zoonoses,” International Journal for Parasitology, vol. 35, no. 11-12, pp. 1255–1278, 2005.
[3]
“Thinking beyond deworming,” The Lancet, vol. 364, no. 9450, pp. 1993–1994, 2004.
[4]
A. C. Correa, J. S. Escobar, P. Durand et al., “Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of Fascioliasis,” BMC Evolutionary Biology, vol. 10, no. 1, article 381, 2010.
[5]
O. Singh and R. A. Agarwal, “Toxicity of certain pesticides to two economic species of snails in northern India,” Journal of Economic Entomology, vol. 14, pp. 568–571, 1981.
[6]
M. F. M. Soliman, “Epidemiological review of human and animal fascioliasis in Egypt,” Journal of Infection in Developing Countries, vol. 2, no. 3, pp. 182–189, 2008.
[7]
S. Hurtrez-Boussès, C. Meunier, P. Durand, and F. Renaud, “Dynamics of host-parasite interactions: the example of population biology of the liver fluke (Fasciola hepatica),” Microbes and Infection, vol. 3, no. 10, pp. 841–849, 2001.
[8]
E. E. Strong, O. Gargominy, W. F. Ponder, and P. Bouchet, “Global diversity of gastropods (Gastropoda; Mollusca) in freshwater,” Hydrobiologia, vol. 595, no. 1, pp. 149–166, 2008.
[9]
G. V. Hillyer and W. Apt, “Food-borne trematode infections in the Americas,” Parasitology Today, vol. 13, no. 3, pp. 87–88, 1997.
[10]
J. Ramachandran, S. Ajjampur, A. Chandramohan, and G. M. Varghese, “Case of human fascioliasis in India: tip of the iceberg,” Journal of Postgraduate Medicine, vol. 58, pp. 150–152, 2012.
[11]
R. A. Agarwal and D. K. Singh, “Harmful Gastropods and their control,” Acta Hydrochimica et Hydrobiologica, vol. 16, pp. 113–138, 1988.
[12]
G. Bicker, W. J. Davis, E. M. Matera, M. P. Kovac, and D. J. Stormogipson, “Chemoreception and mechanoreception in the gastropod mollusc Pleurobranchaea californica. I. Extracellular analysis of afferent pathways,” Journal of Comparative Physiology A, vol. 149, no. 2, pp. 221–234, 1982.
[13]
S. C. Rosen, K. R. Weiss, and I. Kupfermann, “Cross-modality sensory integration in the control of feeding in Aplysia,” Behavioral and Neural Biology, vol. 35, no. 1, pp. 56–63, 1982.
[14]
C. J. H. Elliott and A. J. Susswein, “Comparative neuroethology of feeding control in molluscs,” The Journal of Experimental Biology, vol. 205, no. 7, pp. 877–896, 2002.
[15]
R. Menzel, “Spectral sensitivity and colour vision in invertebrates,” in Comparative Physiology and Evolution of Vision in Invertebrates, H. Autrum, Ed., vol. 7/6A of Handbook of Sensory Physiology, pp. 503–580, Springer, 1979.
[16]
M. Sakakibara, T. Aritaka, A. Iizuka, H. Suzuki, T. Horikoshi, and K. Lukowiak, “Electrophysiological responses to light of neurons in the eye and statocyst of Lymnaea stagnalis,” Journal of Neurophysiology, vol. 93, no. 1, pp. 493–507, 2005.
[17]
K. Sunita and D. K. Singh, “Fascioliasis control: in vivo and in vitro phytotherapy of vector snail to kill Fasciola larva,” Journal of Parasitology Research, vol. 2011, Article ID 240807, 7 pages, 2011.
[18]
A. P. Tripathi and D. K. Singh, “Attraction of eyestalk ablated Lymnaea acuminata towards the different photo and chemo stimulants,” Scientific Journal of Biological Sciences, vol. 2, no. 5, pp. 94–104, 2013.
[19]
F. Tiwari and D. K. Singh, “Behavioural responses of the snail Lymnaea acuminata to carbohydrates in snail-attractant pellets,” Naturwissenschaften, vol. 91, no. 8, pp. 378–380, 2004.
[20]
G. L. Ellman, K. D. Courtney, V. Andres Jr., and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–95, 1961.
[21]
D. K. Singh and R. A. Agarwal, “In vivo and in vitro studies on synergism with anticholinesterase pesticides in the snail Lymnaea acuminata,” Archives of Environmental Contamination and Toxicology, vol. 12, no. 4, pp. 483–487, 1983.
[22]
O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[23]
R. R. Sokal and F. J. Rohlf, Introduction to Biostatistics, W. H. Freeman, San Francisco, Calif, USA, 1973.
[24]
M. F. Land, “Molluscs,” in Photoreception and Vision in Invertebrates, M. A. Ali, Ed., pp. 699–725, Plenum, Montreal, Canada, 1984.
[25]
P. Williams and P. M. Z. Coelho, “The attraction of snails to beta lights,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 67, pp. 616–617, 1973.
[26]
A. M. Chernorizov, E. D. Shekhter, G. G. Arakelov, and M. M. Zimachev, “The vision of the snail: the spectral sensitivity of the dark-adapted eye,” Neuroscience and Behavioral Physiology, vol. 24, no. 1, pp. 59–62, 1994.
[27]
K. J. A. Vanhoutte and D. G. Stavenga, “Visual pigment spectra of the comma butterfly, Polygonia c-album, derived from in vivo epi-illumination microspectrophotometry,” Journal of Comparative Physiology A, vol. 191, no. 5, pp. 461–473, 2005.
[28]
H. Sunada, T. Sakaguchi, T. Horikoshi, K. Lukowiak, and M. Sakakibara, “The shadow-induced withdrawal response, dermal photoreceptors, and their input to the higher-order interneuron RPeD11 in the pond snail Lymnaea stagnalis,” The Journal of Experimental Biology, vol. 213, no. 20, pp. 3409–3415, 2010.
[29]
V. A. Straub, B. J. Styles, J. S. Ireland, M. O'Shea, and P. R. Benjamin, “Central localization of plasticity involved in appetitive conditioning in Lymnaea,” Learning and Memory, vol. 11, no. 6, pp. 787–793, 2004.
[30]
H. Wedemeyer and D. Schild, “Chemosensitivity of the osphradium of the pond snail Lymnaea stagnalis,” The Journal of Experimental Biology, vol. 198, no. 8, pp. 1743–1754, 1995.
[31]
N. N. Kamardin, Y. Shalanki, K. Sh. Rozha, and A. D. Nozdrachev, “Studies of chemoreceptor perception in mollusks,” Neuroscience and Behavioral Physiology, vol. 31, no. 2, pp. 227–235, 2001.
[32]
M. Podolska and D. Napierska, “Acetylcholinesterase activity in hosts (herring Clupea harengus) and parasites (Anisakis simplex larvae) from the southern Baltic,” ICES Journal of Marine Science, vol. 63, no. 1, pp. 161–168, 2006.
[33]
C. Hebb, “Cholinergic neurons in vertebrates,” Nature, vol. 192, no. 4802, pp. 527–529, 1961.
[34]
V. V. Zhukov, “On the problem of retinal transmitters of the freshwater mollusc Lymnaea stagnalis,” Journal of Evolutionary Biochemistry and Physiology, vol. 43, no. 5, pp. 440–447, 2007.
[35]
D. K. Singh and R. A. Agarwal, “Alteration in biogenic amine levels in the snail Lymnaea acuminata by the latex of Euphorbia royleana,” Toxicology Letters, vol. 21, no. 3, pp. 309–314, 1984.
[36]
S. Kumar, D. K. Singh, and V. K. Singh, “Binary combination of different breeds of freeze-dried cow urine (FCU) with some plant molluscicides against Lymnaea acuminata, vector of Fascioliasis,” Advances in Life Sciences, vol. 1, no. 1, pp. 24–29, 2011.