全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A 7-Level Single DC Source Cascaded H-Bridge Multilevel Inverter with a Modified DTC Scheme for Induction Motor-Based Electric Vehicle Propulsion

DOI: 10.1155/2013/718920

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a new hybrid cascaded H-bridge multilevel inverter motor drive DTC scheme for electric vehicles where each phase of the inverter can be implemented using a single DC source. Traditionally, each phase of the inverter requires DC source for output voltage levels. In this paper, a scheme is proposed that allows the use of a single DC source as the first DC source which would be available from batteries or fuel cells, with the remaining ( ) DC sources being capacitors. This scheme can simultaneously maintain the capacitors of DC voltage level and produce a nearly sinusoidal output voltage due to its high number of output levels. In this context, high performances and efficient torque and flux control are obtained, enabling a DTC solution for hybrid multilevel inverter powered induction motor drives intended for electric vehicle propulsion. Simulations and experiments show that the proposed multilevel inverter and control scheme are effective and very attractive for embedded systems such as automotive applications. 1. Introduction Currently, automotive applications such as EV’s seem to constitute an increasingly effective alternative to conventional vehicles, allowing vehicle manufacturers to fulfill users requirements (dynamic performances and fuel consumption) and environmental constraints (pollutant emissions reduction) [1]. The electric propulsion system is the heart of EV. It consists of the motor drive, transmission device, and wheels. In fact, the motor drive, comprising the electric motor, the power converter, and the electronic controller, is the core of the EV propulsion system. The motor drive is configured to respond to a torque demand set by the driver [2]. The induction motor seems to be a very interesting solution for EV’s propulsion. FOC and DTC have emerged as the standard industrial solutions to achieve high dynamic performance [3–5]. However some drawbacks of both methods have motivated important research efforts in the last decades. Particularly for DTC, the high torque ripple and the variable switching frequency introduced by the hysteresis comparators have been extensively addressed [6, 7]. In addition, several contributions that combine DTC principles together with PWM and SVM have been reported to correct these problems. This approach is based on the load angle control, from which a voltage reference vector is computed which is finally modulated by the inverter [8]. Although one major feature of classic DTC is the absence of modulators and linear controllers, this approach has shown significant improvements and

References

[1]  C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid and fuel cell vehicles: architectures and modelling,” IEEE Transactions on Vehicular Technology, vol. 59, no. 2, pp. 589–598, 2010.
[2]  M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Transactions on Vehicular Technology, vol. 55, no. 6, pp. 1756–1764, 2006.
[3]  D. O. Neacsu and K. Rajashekara, “Comparative analysis of torque-controlled IM drives with applications in electric and hybrid vehicles,” IEEE Transactions on Power Electronics, vol. 16, no. 2, pp. 240–247, 2001.
[4]  A. Haddoun, M. E. H. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouili, and K. Srairi, “A loss-minimization DTC scheme for EV induction motors,” IEEE Transactions on Vehicular Technology, vol. 56, no. 1, pp. 81–88, 2007.
[5]  D. Casadei, G. Serra, A. Tani, L. Zarri, and F. Profumo, “Performance analysis of a speed-sensorless induction motor drive based on a constant switching-frequency DTC scheme,” IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 476–484, 2003.
[6]  C. A. Martins, X. Roboam, T. A. Meynard, and A. S. Carvalho, “Switching frequency imposition and ripple reduction in DTC drives by using a multilevel converter,” IEEE Transactions on Power Electronics, vol. 17, no. 2, pp. 286–297, 2002.
[7]  J. Rodríguez, J. Pontt, S. Kouro, and P. Correa, “Direct torque control with imposed switching frequency in an 11-level cascaded inverter,” IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 827–833, 2004.
[8]  G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors—a survey,” IEEE Transactions on Industrial Electronics, vol. 51, no. 4, pp. 744–757, 2004.
[9]  M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez, “A survey on cascaded multilevel inverters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2197–2206, 2010.
[10]  P. Cortes, A. Wilson, S. Kouro, J. Rodriguez, and H. Abu-Rub, “Model predictive control of multilevel cascaded H-bridge inverters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2691–2699, 2010.
[11]  J. Dixon, J. Pereda, C. Castillo, and S. Bosch, “Asymmetrical multilevel inverter for traction drives using only one DC supply,” IEEE Transactions on Vehicular Technology, vol. 59, no. 8, pp. 3736–3743, 2010.
[12]  J. Rodriguez, J.-S. Lai, and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls and applications,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724–738, 2002.
[13]  F. Khoucha, S. M. Lagoun, K. Marouani, A. Kheloui, and M. E. H. Benbouzid, “Hybrid cascaded H-bridge multilevel-inverter induction-motor-drive direct torque control for automotive applications,” IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 892–899, 2010.
[14]  Z. Du, L. M. Tolbert, B. Ozpineci, and J. N. Chiasson, “Fundamental frequency switching strategies of a seven-level hybrid cascaded H-bridge multilevel inverter,” IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 24–22, 2009.
[15]  C. Rech and J. R. Pinheiro, “Impact of hybrid multilevel modulation strategies on input and output harmonic performances,” IEEE Transactions on Power Electronics, vol. 22, no. 3, pp. 967–977, 2007.
[16]  F. Khoucha, A. Ales, A. Khoudiri, K. Marouani, M. E. H. Benbouzid, and A. Kheloui, “A 7-level single DC source cascaded H-bridge multilevel inverters control using hybrid modulation,” in Proceedings of the 19th International Conference on Electrical Machines (ICEM ’10), pp. 1–5, Rome, Italy, September 2010.
[17]  J. Liao, K. Corzine, and M. Ferdowsi, “A new control method for single-DC-source cascaded H-bridge multilevel converters using phase-shift modulation,” in Proceedings of the 23rd Annual IEEE Applied Power Electronics Conference and Exposition (APEC '08), pp. 886–890, Austin, Tex, USA, February 2008.
[18]  S. Kouro, R. Bernai, H. Miranda, J. Rodríguez, and J. Pontt, “Direct torque control with reduced switching losses for asymmetric multilevel inverter fed induction motor drives,” in Proceedings of the 41st IEEE IAS Annual Meeting, pp. 2441–2446, Tampa, Fla, USA, October 2006.
[19]  D. Casadei, F. Profumo, G. Serra, and A. Tani, “FOC and DTC: two viable schemes for induction motors torque control,” IEEE Transactions on Power Electronics, vol. 17, no. 5, pp. 779–787, 2002.
[20]  M. Veenstra and A. Rufer, “Control of a hybrid asymmetric multilevel inverter for competitive medium-voltage industrial drives,” IEEE Transactions on Industry Applications, vol. 41, no. 2, pp. 655–664, 2005.
[21]  J. Liao, K. Wan, and M. Ferdowsi, “Cascaded H-bridge multilevel inverters—a reexamination,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '07), pp. 203–207, Arlington, Va, USA, September 2007.
[22]  A. Haddoun, M. E. H. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouili, and K. Srairi, “Modeling, analysis, and neural network control of an EV electrical differential,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2286–2294, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133