全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Vehicle Dynamics Approach to Driver Warning

DOI: 10.1155/2013/109650

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper discusses a concept for enhanced active safety by introducing a driver warning system based on vehicle dynamics that predicts a potential loss of control condition prior to stability control activation. This real-time warning algorithm builds on available technologies such as the Electronic Stability Control (ESC). The driver warning system computes several indices based on yaw rate, side-slip velocity, and vehicle understeer using ESC sensor suite. An arbitrator block arbitrates between the different indices and determines the status index of the driving vehicle. The status index is compared to predetermined stability levels which correspond to high and low stability levels. If the index exceeds the high stability level, a warning signal (haptic, acoustic, or visual) is issued to alert the driver of a potential loss of control and ESC activation. This alert will remain in effect until the index is less than the low stability level at which time the warning signal will be terminated. A vehicle speed advisory algorithm is integrated with the warning algorithm to provide a desired vehicle speed of a vehicle traveling on a curve. Simulation results and vehicle tests were conducted to illustrate the effectiveness of the warning algorithm. 1. Introduction Freeway entrance and exit ramp interchanges are the sites of far more crashes per mile driven than other segments of interstate highways. Crashes most common on exit ramps—run-off-road crashes—frequently occurred when vehicles were exiting interstates at night, in bad weather, or on curved portions of ramps. When the vehicle is driving under these conditions at a higher speed than the surface can allow, the understeer gradient of the vehicle can increase causing the vehicle to plow or decrease and becomes negative causing the vehicle to spinout. In recent years, electronic stability control systems for motor vehicles have become increasingly popular [1–12]. Conventionally, such systems monitor vehicle stability-related quantities such as a yaw rate error, that is, a deviation between yaw rates expected based on vehicle speed and steering wheel angle and an observed yaw rate, and selectively brake the wheels at one side of the vehicle in order to assist cornering, that is, to decrease the deviation between expected and observed yaw rates. Electronic Stability Control (ESC) helps keep the vehicle on its steered path during a turn, to avoid sliding or skidding. It uses a computer linked to a series of sensors—detecting wheel speed, steering angle, yaw rate and lateral acceleration of the vehicle.

References

[1]  D. Hoffman and M. Rizzo, “Chevrolet C5 corvette vehicle dynamic control system,” SAE Paper 980233, 1998.
[2]  K. Jost, “Cadillac stability enhancement,” Automotive Engineering, 1996.
[3]  H. Nakazato, K. Iwata, and Y. Yoshiyoka, “A new system for independently controlling braking force between inner and outer rear wheels,” SAE Paper 890835, 1989.
[4]  H. Inagaki, K. Akuzawa, and M. Sato, “Yaw rate feedback braking force distribution control with control by wire braking system,” in Proceedings of the International Symposium on Advanced Vehicle Control (AVEC '92), pp. 435–440, 1992.
[5]  M. Salman, Z. Zang, and N. Boustany, “Coordinated control of four wheel braking and rear steering,” in Proceedings of the American Control Conference, pp. 6–10, June 1992.
[6]  T. Pilutti, G. Ulsoy, and D. Hrovat, “Vehicle steering intervention through differential braking,” in Proceedings of the American Control Conference, June 1995.
[7]  Y. -Shibahata, M. Abe, K. Shimada, and Y. Furukawa, “Improvement on limit performance of vehicle motion by chassis control,” in Proceedings of the 13th Symposium on the Dynamics of Vehicles on Roads and Tracks (IAVSD '95), 1995.
[8]  C. A. Sawyer, “Controlling vehicle stability,” Automotive Industries, 1995.
[9]  Y. A. Ghoneim, W. C. Lin, D. M. Sidlosky, H. H. Chen, Y. K. Chin, and M. J. Tedrake, “Integrated chassis control system to enhance vehicle stability,” International Journal of Vehicle Design, vol. 23, no. 1, pp. 124–144, 2000.
[10]  H. Leffler, R. Auffhammer, R. Heyken, and H. Roth, “New driving stability control system with reduced technical effort for compact and medium class passenger cars,” SAE Paper 980234, 1998.
[11]  J. Ackermann and S. Turk, “A common controller for a family of plant models,” in Proceedings of the of the 21st IEEE Conference on Decision and Control (CDC '82), Orlando, Fla, USA, 1982.
[12]  T. Pilutti, G. Ulsoy, and D. Hrovat, “Vehicle steering intervention through differential braking,” in Proceedings of the American Control Conference. Part 1 (of 6), pp. 1667–1671, June 1995.
[13]  G. Thomas, “Fundamentals of vehicle dynamics,” Society of Automotive Engineers, Inc. Second Printing, 1992.
[14]  D. karnopp, Vehicle Stability (Marcel Dekker), 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133