The limited amount of energy stored on board of battery electric vehicles (BEV) spurs research activities in the field of efficiency optimization for electric drive train applications in order to achieve an enhanced mileage. In this work a control method for BEV applications with two drive trains (e.g., one at the front and one at the rear axle) is presented. Herein, a simple optimization algorithm is introduced enabling to operate the two drives with different torque values, depending on the instantaneous operation point, leading to a reduction of apparent power losses on board. Simulations on a virtual BEV yield a decrease in the cumulated energy consumptions during typical BEV operation, leading to an increase in the achievable mileage. 1. Introduction In recent years, the need for zero emission transportation spurred the broad market introduction of battery electric vehicles (BEV). BEVs can play a key role on the way to the environmentally conscious society [1]. Especially in mega cities where air pollution is a critical, the emission free vehicles can contribute to improve the health-related quality of life. Moreover, if the energy for battery charging comes from renewable sources (wind, solar, hydro power, etc.), the vehicles operate almost 100% CO2 neutral. However, one main drawback of battery powered vehicles is the very limited range, due to the very limited amount of energy stored in the battery. On the one hand, the efficiency of energy conversion of electric power trains is 2-3 times higher ( ) than the efficiency of combustion engines ( –40%). On the other hand, the nowadays commercial battery cells comprise energy densities of maximum 250?Wh/kg [2], which is less than one fortieth of the theoretical energy density of conventional fuels (petrol gas approx. 12.000?Wh/kg). Moreover, the energy density of common battery systems is reduced about almost one-half, due to efforts for housing, cooling, and integrated electrics/electronics. An electric drive train substituting the combustion engine is one possible vehicle concept. Besides, various approaches (e.g., four separate in-wheel drives) are possible. In the following a vehicle architecture including two drives (i.e., one at the front and one at the rear axle (→ 4?WD); see Figure 1) is exemplarily considered. Figure 1: Power supply architecture of a two motor BEV concept. In the illustrated BEV architecture the HVAC or at least the integrated compressor is supplied directly from the battery. To supply additional aggregates, the battery voltage is transferred into, for example, 12?V by a
References
[1]
M. A. Roscher, J. Vetter, and D. U. Sauer, “Influence of cathodes technology on the power capability and charge acceptance of lithium ion batteries,” in Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS '09), Stavanger, Norway, May 2009.
K. Imai, T. Ashida, Y. Zhang, and S. Minami, “Theoretical performance of EV range extender compared with plugin hybrid,” Journal of Asian Electric Vehicles, vol. 6, no. 2, pp. 1181–1184, 2008.
[4]
Y. Yang, J. Liu, and T. Hu, “An energy management system for a directly-driven electric scooter,” Energy Conversion and Management, vol. 52, no. 1, pp. 621–629, 2011.
[5]
Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) considering charging request and battery condition,” in Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe '10), November 2010.
[6]
S. Kermani, S. Delprat, R. Trigui, and T. Guerra, “Predictive energy management of hybrid vehicle,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '08), vol. 20, no. 1, pp. 1–6, September 2008.
[7]
A. Dardanelli, M. Tanelli, S. M. Savaresi, and M. Santucci, “Active energy management of electric vehicles with cartographic data,” in Proceedings of the IEEE International Electric Vehicle Conference (IEVC '12), Greenville, SC, USA, March 2012.
[8]
Y. Zhang, W. Wang, Y. Kobayashi, and K. Shirai, “Remaining driving range estimation of electric vehicle,” in Proceedings of the IEEE International Electric Vehicle Conference (IEVC '12), Greenville, SC, USA, March 2012.
[9]
C. Dextreit, F. Assadian, I. Kolmanovsky, J. Mahtani, and K. Burnham, “Hybrid electric vehicle energy management using gametheory,” SAE Technical Paper 2008-01-1317, 2008.
[10]
A. A. Ferreira, J. A. Pomilio, G. Spiazzi, and L. de Araujo Silva, “Energy management fuzzy logic supervisory for electric vehicle power supplies system,” IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 107–115, 2008.
[11]
J. Schiffer, O. Bohlen, R. W. De Doncker, D. U. Sauer, and K. Y. Ahn, “Optimized energy management for fuelcell-supercap hybrid electric vehicles,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '05), pp. 716–723, September 2005.
[12]
M. A. Roscher, W. Leidholdt, and J. Trepte, “High efficiency energy management in BEV applications,” International Journal of Electrical Power and Energy Systems, vol. 37, no. 1, pp. 126–130, 2012.
[13]
H. Wu, L. Li, B. Kou, and Z. Ping, “The research on energy regeneration of permanent magnet synchronous motor used for hybrid electric vehicle,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '08), pp. 1–4, September 2008.
[14]
L. Jishun, L. Jun, W. Qingnian, W. Jiaxue, and S. Jinhu, “Study on mechanism of energy saving for double motor configuration hybrid electric vehicle,” in Proceedings of the International Conference on Mechatronic Science, Electric Engineering and Computer (MEC '11), pp. 2596–2602, August 2011.
[15]
J. Lee, K. Nam, S. Choi, and S. Kwon, “A lookup table based loss minimizing control for FCEV permanent magnet synchronous motors,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '07), pp. 175–179, September 2007.
[16]
J. J. C. Gyselinck, L. Vandevelde, D. Makaveev, and J. A. A. Melkebeek, “Calculation of no load losses in an induction motor using an inverse vector Preisach model and an eddy current loss model,” IEEE Transactions on Magnetics, vol. 36, no. 4, pp. 856–860, 2002.
[17]
B. J. Chalmers and I. Musaba, “Performance characteristics of permanent-magnet and reluctance machines to meet EV requirements,” in Proceedings of the IEE Colloquium on Machines and Drives for Electric and Hybrid Vehicles, Digest No: 1996/152, August 2002.
[18]
F. Deng, “Improved analytical modeling of commutation losses including space harmonic effects in permanent magnet in brushless DC motors,” in Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC '97), May 1997.
[19]
J. Lee, K. Nam, S. Choi, and S. Kwon, “Loss-minimizing control of PMSM with the use of polynomial approximations,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1071–1082, 2009.