This paper reviews the history of automotive technology development and human factors research, largely by decade, since the inception of the automobile. The human factors aspects were classified into primary driving task aspects (controls, displays, and visibility), driver workspace (seating and packaging, vibration, comfort, and climate), driver’s condition (fatigue and impairment), crash injury, advanced driver-assistance systems, external communication access, and driving behavior. For each era, the paper describes the SAE and ISO standards developed, the major organizations and conferences established, the major news stories affecting vehicle safety, and the general social context. The paper ends with a discussion of what can be learned from this historical review and the major issues to be addressed. A major contribution of this paper is more than 180 references that represent the foundation of automotive human factors, which should be considered core knowledge and should be familiar to those in the profession. 1. Introduction In many fields of technology, examinations of the past can provide insights into the future. This paper examines (1) the driver- and passenger-related technology that was developed as a function of time and (2) the research necessary for those developments, as they affected both vehicle design and evaluation. This paper also examines how those developments were influenced by (1) advances in basic technology, (2) requirements from government agencies and international standards, and (3) even the news media. All of this is done roughly chronologically, with developments grouped into three time periods—before World War II, after World War II until 1989, and since 1990. In the history of research, a research topic becomes popular at some time because of a societal need, researcher interest, technology trends, the introduction of a new method, or a new theory. As a consequence, the number of researchers in the field grows, as does the number of publications, which in turn leads to products, services, and new ideas. These factors have certainly affected the growth of the human factors profession. The history of automotive technology and human factors research can be viewed similarly. Its history can be divided into three periods. They are (1) the decades before World War II (Section 2), (2) World War II until 1989 (Section 3), and (3) 1990 and beyond (Section 4). This last period is continuing, so it is a bit more difficult to be retrospective in grouping decades. Therefore, Section 4 is divided by research topics, not by decades.
References
[1]
F. W. Wells, Occupant Protection and Automobile Safety in the U.S. Since 1900, SAE International, Warrendale, Pa, USA, 2012.
[2]
A. J. Yanik, “The first 100 years of transportation safety: part 1,” in The Automobile: A Century of Progress, pp. 121–132, Society of Automotive Engineers, Warrendale, Pa, USA, 1997.
[3]
“25 Years Progress of SAE,” A leaflet of the 25th Anniversary Celebration of the Society of Automotive Engineers, Society of Automotive Engineers, Warrendale, Pa, USA, May 1930.
[4]
W. Kamm, Das Kraftfahrzeug, Springer, Berlin, Germany, 1936.
[5]
A. J. Yanik, “The first 100 years of transportation safety: part 2,” in The Automobile: A Century of Progress, pp. 133–149, Society of Automotive Engineers, Warrendale, Pa, USA, 1997.
[6]
N. Ach, “Psychologie und technik bei bek?mpfung von auto-unf?llen,” Industrielle Psychotechnik, vol. 6, no. 3, pp. 87–105, 1929.
[7]
T. W. Forbes, “The normal automobile driver as a traffic problem,” The Journal of General Psychology, vol. 20, pp. 471–474, 1939.
[8]
D. Meister, The History of Human Factors and Ergonomics, Lawrence Erlbaum Associates, Mahwah, NJ, USA, 1999.
[9]
H. W. Sinaiko, Selected Papers on Human Factors in the Design and Use of Control Systems, Dover, Mineola, NY, USA, 2000.
[10]
A. Chapanis, W. R. Garner, and C. T. Morgan, Applied Experimental Psychology, John Wiley & Sons, New York, NY, USA, 1949.
[11]
National Research Council, Human Factors in Undersea Warfare, National Research Council, Committee on Undersea Warfare, Panel on Psychology and Physiology, Washington, DC, USA, 1949.
[12]
P. G. Ronco, “Human factors engineering, bibliographic series volume 1 1940–1959 literature,” Technical Report AD 639806, Tufts University, Medford, Mass, USA, 1966.
[13]
R. A. McFarland and H. W. Stoudt, “Human body size and passenger vehicle design,” SAE Special Publication 142, Society of Automotive Engineers, Warrendale, Pa, USA, 1955.
[14]
J. Kulowski, “Orthopedic aspects of automobile crash injuries and deaths,” Journal of the American Medical Association, vol. 163, no. 4, pp. 230–233, 1957.
[15]
E. R. Dye, “Kinematics of the human body under crash conditions,” Clinical Orthopaedics, vol. 8, pp. 305–309, 1956.
[16]
“Manikins for use in defining vehicle seating accommodation,” SAE Recommended Practice J826, 1962.
[17]
“Motor vehicle driver’s eye range,” SAE Recommended Practice J941, 1965.
[18]
D. Hammond and R. Roe, “Driver head and eye positions,” SAE Technical Paper 720200, Society of Automotive Engineers, Warrendale, Pa, USA, 1972.
[19]
J. F. Meldrum, “Automobile driver eye position,” SAE Technical Paper 650464, Society of Automotive Engineers, Warrendale, Pa, USA, 1972.
[20]
“Passenger car rear vision,” SAE Recommended Practice J834, 1967.
[21]
R. Roe and P. Kyropoulos, “The application of anthropometry to automotive design,” SAE Technical Paper 70053, Society of Automotive Engineers, Warrendale, Pa, USA, 1970.
[22]
Occupant Crash Protection, “Federal Motor Vehicle Safety Standard (FMVSS) 208, 49 CFR 571.208,” Standard 208, 1959.
[23]
E. Simonson, C. Baker, N. Burns, C. Keiper, O. H. Schmitt, and S. Stackhouse, “Cardiovascular stress (electrocardiographic changes) produced by driving an automobile,” American Heart Journal, vol. 75, no. 1, pp. 125–135, 1968.
[24]
R. C. Jagacinski and J. M. Flach, Control Theory For Humans, Lawrence Erlbaum Associates, Mahwah, NJ, USA, 2003.
[25]
D. McRuer and D. H. Weir, “Theory of manual vehicular control,” Ergonomics, vol. 12, no. 4, pp. 599–633, 1969.
[26]
T. B. Sheridan, Ed., Mathematical Models and Simulation of Automobile Driving, Conference Proceedings, Massachusetts Institute of Technology, Cambridge, Mass, USA, 1967.
[27]
N. Rashevsky, “Man-machine interaction in automobile driving,” Progress in Biocybernetics, vol. 42, pp. 188–200, 1964.
[28]
C. C. MacAdam, “Application of an optimal preview control for simulation of closed-loop automobile driving,” IEEE Transactions on Systems, Man and Cybernetics, vol. 11, no. 6, pp. 393–399, 1981.
[29]
I. D. Brown and E. C. Poulton, “Measuring the spare “mental capacity” of car drivers by a subsidiary task,” Ergonomics, vol. 4, no. 1, pp. 35–40, 1961.
[30]
J. W. Senders, A. B. Kristofferson, W. H. Levison, C. W. Dietrich, and J. L. Ward, “The attentional demand of automobile driving,” Highway Research Record 195, 1967.
[31]
R. E. Beinke and J. K. Williams, “Driving simulator,” in Proceedings of Automotive Safety Seminar, vol. 24, General Motors, Warren, Mich, USA, 1968.
[32]
E. Kikuchi, T. Matsumoto, S. Inomata, M. Masaki, T. Yatabe, and T. Hirose, “Development and application of high speed automobile driving simulator,” Technical Report of Mechanical Engineering Laboratory 89, 1976 (Japanese).
[33]
J. Drosdol and F. Panik, “The Daimler-Benz driving simulator: a tool for vehicle development,” SAE Technical Paper 850334, Society of Automotive Engineers, Warrendale, Pa, USA, 1985.
[34]
R. Nader, Unsafe at any Speed, Grossman, New York, NY, USA, 1965.
[35]
G. T. Schwartz, “The myth of the Ford Pinto case,” Rutgers Law Review, vol. 43, pp. 1013–1068, 1991.
[36]
M. Dowie, “Pinto madness,” Mother Jones, September-October 1977.
[37]
W. M. Hoffman, “Case study—the Ford Pinto,” Corporate Obligations and Responsibilities: Everything Old is New Again, 222–229, 1966.
[38]
A. Irving and K. S. Rutley, “Some driving aids and their assessments,” in Proceedings of the Symposium on Psychological Aspects of Driver Behavior, Institute for Road Safety Research, 1971.
[39]
R. E. Reilly, D. S. Kurke, and C. C. Buckenmaier, “Validation of the reduction of rear-end collisions by a high-mounted auxiliary stop lamp,” Technical Report DOT HS 805 360, U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, USA, 1980.
[40]
P. L. Olson, “Evaluation of a new LED high-mounted stop lamp, in vehicle lighting trends,” Special Publication SP-692, Society of Automotive Engineers, Warrendale, Pa, USA, 1987.
[41]
K. Rumar, G. Helmers, and M. Thorell, “Obstacle visibility with European Halogen H4 and American sealed beam headlights,” Tech. Rep. 133, University of Uppsala, Department of Psychology, Uppsala, Sweden, 1973.
[42]
J. K. Foster, J. D. Kortge, and M. J. Wolanin, “Hybrid III-A biomechanically-based crash test dummy,” SAE Technical Paper 770938, Society of Automotive Engineers, Warrendale, Pa, USA, 1977.
[43]
J. Versace, “A review of the severity index,” SAE Technical Paper 710881, Society of Automotive Engineers, Warrendale, Pa, USA, 1971.
[44]
D. C. Hammond and R. W. Roe, “SAE controls reach study,” SAE Technical Paper 720199, Society of Automotive Engineers, Warrendale, Pa, USA, 1972.
[45]
“Driver hand control reach,” SAE Recommended Practice J287, 1976.
[46]
“Direction-of-motion stereotypes for automotive hand controls,” SAE Recommended Practice J1139, 1977.
[47]
“Symbols for motor vehicle controls,” SAE Standard J1048, 1974.
[48]
M. J. Griffin, Handbook of Human Vibration, Elsevier, London, UK, 1996.
[49]
“Mechanical vibration and shock—guide for the evaluation of human exposure to whole-body vibration,” ISO 2631, 1974.
[50]
R. R. Mourant and T. H. Rockwell, “Mapping eye-movement patterns to the visual scene in driving: an exploratory study,” Human Factors, vol. 12, no. 1, pp. 81–87, 1970.
[51]
B. Richter, “Driving simulator studies: the influence of vehicle parameters on safety in critical situations,” SAE Technical Paper 741105, Society of Automotive Engineers, Warrendale, Pa, USA, 1974.
[52]
R. C. McLane and W. W. Wierwille, “The influence of motion and audio cues on driver performance in an automobile simulator,” Human Factors, vol. 17, no. 5, pp. 488–501, 1975.
[53]
R. G. Snyder, T. L. McDole, W. M. Ladd, and D. J. Minahan, “On-road crash experience of utility vehicles,” Tech. Rep. UM-HSRI-80-14, Highway Safety Research Institute, Ann Arbor, Mich, USA, 1980.
[54]
R. G. Snyder, T. L. McDole, W. M. Ladd, and D. J. Minahan, “An overview of the on-road crash experience of utility vehicles (highlights of the technical report),” Tech. Rep. UM-HSRI-80-15, Highway Safety Research Institute, Ann Arbor, Mich, USA, 1980.
[55]
S. Franklin and M. Stepanek, Trouble in Jeep Country, AMC Claima It’s Safe, Detroit Free Press, 1983.
[56]
P. Niedermeyer, “The Best of TTAC: The Audi 5000 Intended Unintended Acceleration Debacle,” http://www.thetruthaboutcars.com/2010/03/the-best-of-ttac-the-audi-5000-intended-unintended-acceleration-debacle/.
[57]
R. Walter, G. Carr, H. Weinstock, D. Sussman, and J. Pollard, “Study of mechanical and driver-related systems of the Audi 5000 capable of producing uncontrolled sudden acceleration incidents,” Tech. Rep. DOT-TSC-NHTSA-88-4, U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, USA, 1988.
[58]
National Aeronautics and Space Administration, Technical Support to the National Highway Traffic Safety Administration (NHTSA) on the Reported Toyota Motor Corporation (TMC) Unintended Acceleration (UA) Investigation (NESC Assessment TI-10-00618), National Aeronautics and Space Administration, NASA Safety and Engineering Center, January 2011.
[59]
J. D. Brown, “The opportunities of ergonomics,” in Human Factors in Transport Research.Vehicle Factors: Transport Systems, Workspace, Information and Safety, D. J. Oborne and J. A. Lewis, Eds., vol. 1, Academic Press, New York, NY, USA, 1980.
[60]
H. Bubb, F. Engstler, F. Fritzsche et al., “The development of RAMSIS in past and future as an example for the cooperation between industry and university,” International Journal of Human Factors Modelling and Simulation, vol. 1, no. 1, pp. 140–157, 2006.
[61]
P. Blanchonette, “Jack human modelling tool: a review,” Tech. Rep. DSTO-TR-2364, Defense Science and Technology Organization Victoria (Australia) Air Operations Division, Fishermans Bend, Victoria, Australia, 2010, document ADA 518132.
[62]
K. S. Rutley, “Control of drivers' speed by means other than enforcement,” Ergonomics, vol. 18, no. 1, pp. 89–100, 1975.
[63]
K. Bengler, H. Bubb, I. Totzke, J. Schumann, and F. Flemisch, “Automotive,” in Information Ergonomics—A Theoretical Approach and Practical Experience in Transportation, P. Sandle and M. Stein, Eds., Springer, Heidelberg, Germany, 2012.
[64]
K. Parsons, Human Thermal Environments, Taylor & Francis, London, UK, 2nd edition, 2003.
[65]
D. P. Gatley, “Psychrometric chart celebrate 100th anniversary,” ASHRAE Journal, vol. 46, no. 11, pp. 16–20, 2004.
[66]
D. P. Wyon, C. Tennstedt, I. Lundgren, and S. Larsson, “A new method for the detailed assessment of human heat balance in vehicles, Volvo’s thermal manikin, VOLTMAN,” SAE Technical Paper 850042, Society of Automotive Engineers, Warrendale, Pa, USA, 1985.
[67]
C. W. Erwin, J. W. Hartwell, M. R. Volow, and G. S. Alberti, “Electrodermal change as a predictor of sleep,” in Studies of Drowsiness (Final Report), C. W. Erwin, Ed., The National Driving Center, Durham, North Carolina, 1976.
[68]
T. A. Dingus, L. H. Hardee, and W. W. Wierwille, “Detection of drowsy and intoxicated drivers based on highway driving performance measures,” IEOR Department Report #8402, Virginia Tech, Department of Industrial Engineering and Operations Research, Blacksburg, Va, USA, 1985.
[69]
W. W. Wierwille, “Research on vehicle-based driver status/performance monitoring, development, validation, and refinement of algorithms for detection of driver drowsiness,” Technical Report DOT HS 808 247, U.S. Department of Transportation, Washington, DC, USA, 1994.
[70]
D. A. Spyker, S. P. Stackhouse, S. Khalalfalla, and R. C. McLane, “Development of techniques for measuring pilot workload,” Contractor report NASA CR 1888, NASA, Washington, DC, USA, 1971.
[71]
T. Miura, “Coping with situational demands: a study of eye movements and peripheral vision performance,” in Vision in Vehicles 1, A. G. Gale, M. H. Freeman, C. M. Haslegrave, P. Smith, and S. P. Taylor, Eds., pp. 205–216, North-Holland, Amsterdam, The Netherlands, 1986.
[72]
S. Nordomack, H. Jansson, M. Lidstrom, and G. Palmkvist, “A moving base driving simulator with wide angle visual system,” VTI Technical Report 106A, Swedish Road and Traffic Research Institute, Linkoping, Sweden, 1986.
[73]
S. Hahn and W. Kaeding, “The Daimler-Benz driving simulator-presentation of selected experiments,” SAE Technical Paper 880058, Society of Automotive Engineers, Warrendale, Pa, USA, 1988.
[74]
E. Blana, “A survey of driving research simulators around the world,” ITS Working Paper 481, University of Leeds, Institute for Transport Studies, Leeds, UK, 1996.
[75]
C. Y. D. Yang, J. D. Fricker, and T. Kuczek, “Designing advanced traveler information systems from a driver's perspective: Results of a driving simulation study,” Transportation Research Record, no. 1621, pp. 20–26, 1998.
[76]
W. Janssen and R. van der Horst, “Presenting descriptive information in variable message signing,” Transportation Research Record, no. 1403, pp. 83–87, 1993.
[77]
M. P. Reed and P. A. Green, “Comparison of driving performance on-road and in a low-cost simulator using a concurrent telephone dialling task,” Ergonomics, vol. 42, no. 8, pp. 1015–1037, 1999.
[78]
A. Steinfeld and P. Green, “Driver responses to navigation information on full-windshield, head-up displays,” International Journal of Vehicle Design, vol. 19, no. 2, pp. 135–149, 1998.
[79]
J. R. Bloomfield, J. R. Buck, J. M. Christensen, and A. Yenamandra, “Human factors aspects of the transfer of control from the driver to the automated highway system,” Tech. Rep. FHWA-RD-94-173, U.S. Department of Transportation, Federal Highway Administration, Washington, DC, USA, 1994.
[80]
T. Suetomi and K. Kido, “Driver behavior under a collision warning system: a driving simulator study,” SAE Technical Paper 970279, Society of Automotive Engineers, Warrendale, Pa, USA, 1997.
[81]
J. Godthelp and J. Schumann, “The use of an intelligent accelerator as an element of a driver support system,” in Proceedings of the 24th ISATA International Symposium on Automotive Technology and Automation, 1991.
[82]
W. W. Wierwille, M. C. Hulse, T. J. Fischer, and T. A. Dingus, “Strategic use of visual resources by the driver while navigating with an in-car navigation display system,” SAE Technical Paper 885180, Society of Automotive Engineers, Warrendale, Pa, USA, 1988.
[83]
H. K. Zwahlen, in Information Processing, Driver Performance Data Book, Technical Report DOT HS 807 121, R. L. Henderson, Ed., U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, USA, 1987.
[84]
F. J. Mammano and R. Favout, “An electronic route-guidance system for highway vehicles,” IEEE Transactions on Vehicular Technology, vol. 19, no. 1, pp. 143–152, 1999.
[85]
H. Ito, “Integrated development of automotive navigation and route guidance system—product development for realization of dreams and standardization,” Synthesiology (English Edition), vol. 4, no. 3, pp. 162–171, 2012.
[86]
E. J. Blum, R. Haller, and G. Nirschl, “Driver-copilot interaction: modelling aspects and techniques,” in Proceedings of the 2nd Prometheus Workshop, FHG-IITB, Stockholm, Sweden, 1989.
[87]
J. A. Michon, Generic Intelligent Driver Support, Taylor & Francis, London, UK, 1993.
[88]
A. M. Parkes and S. Franzen, Driving Future Vehicles, Taylor & Francis, London, UK, 1993.
[89]
H. Ikeda, Y. Kobayashi, and K. Hirano, “How car navigation systems have been put into practical use: development management and commercialization process,” Synthesiology (English Edition), vol. 3, no. 4, pp. 280–289, 2011.
[90]
P. Frame, “How GM trumped Dateline, maker used vast resources to dismantle pickup story,” Automotive News, pp. 1, 1993.
[91]
P. Green, W. Levison, G. Paelke, and C. Serafin, “Preliminary human factors guidelines for driver information systems,” Tech. Rep. FHWA-RD-94-087, U.S. Department of Transportation, Federal Highway Administration, McLean, Va, USA, 1995.
[92]
A. Stevens, A. C. Board, P. Allen, and A. Quimby, “A safety checklist of the assessment of in-vehicle information systems: scoring proforma,” Project Report PA3536-A/99, Transport Research Laboratory, Crowthorne, UK, 1999.
[93]
T. Ross, K. Midtland, M. Fuchs et al., HARDIE Design Guidelines Handbook: Human Factors Guidelines for Information Presentation by ATT Systems, Commission of the European Communities, Brussels, Luxembourg, 1996.
[94]
P. Green, “Driver interface safety and usability standards: an overview,” in Driver Distraction Theory, Effects, and Mitigation, M. Regan, J. Lee, and K. Young, Eds., pp. 445–464, CRC Press, Boca Raton, Fla, USA, 2008.
[95]
“Wirtschaftsforum VerkehrstelematikVereinbarung zu Leitlinien für die Gestaltung und Installation von Informations- und Kommunikationssystemen in Kraftfahrzeugen,” (English translation: Steering Group on the Economic Forum on Telematics in Transport, Agreement on guidelines for the design and installation of information and communication systems in motor vehicles), Bonn, Germany, 1996.
[96]
O. M. J. Carsten and L. Nilsson, “Safety assessment of driver assistance systems,” European Journal of Transport and Infrastructure Research, vol. 1, no. 3, pp. 225–243, 2001.
[97]
C. Heinrich, “Automotive HMI International Standards,” in Proceedings 4th International Conference on Applied Human Factors and Ergonomics (AHFE '12), 2012.
[98]
W. W. Wierwille, J. F. Antin, T. A. Dingus, and M. C. Hulse, “Visual attentional demand of a in-car navigational display system,” in Vision in Vehicles, A. G. Gale, M. H. Freeman, C. M. Haslegrave, P. Smith, and S. P. Taylor, Eds., vol. 2, pp. 307–316, Elsevier, Amsterdam, The Netherlands, 1988.
[99]
H. T. Zwahlen, C. C. Adams Jr., and D. P. DeBald, “Safety aspects of CRT touch panel controls in automobiles,” in Vision in Vehicles, A. G. Gale, M. H. Freeman, C. M. Haslegrave, P. Smith, and S. P. Taylor, Eds., vol. 2, pp. 335–344, Elsevier, Amsterdam, The Netherlands, 1988.
[100]
A. R. A. van der Horst, “Occlusion as a measure for visual workload: an overview of TNO occlusion research in car driving,” Applied Ergonomics, vol. 35, no. 3, pp. 189–196, 2004.
[101]
J. F. Krems, A. Keinath, M. Baumann, C. Gelau, and K. Bengler, “Evaluating visual display designs in vehicles: advantages and disadvantages of the occlusion technique,” in Advances in Network Enterprises, Virtual Organizations, Balanced Automation, and Systems Integration, L. M. Camarinha-Matos, H. Afsarmanesh, and H. H. Erbe, Eds., pp. 361–368, Kluwer Academic, Norwell, Mass, USA, 2000.
[102]
M. Akamatsu, “Japanese approaches to principles, codes, guidelines and checklists for in-vehicle HMI,” in Driver Distraction Theory, Effects, and Mitigation, M. Regan, J. Lee, and K. Young, Eds., pp. 425–444, CRC Press, Boca Raton, Fla, USA, 2008.
[103]
“Ergonomic aspects of transport information and control systems—occlusion method to assess visual distraction,” ISO 16673, 2007.
[104]
P. Green, “The 15-second rule for driver information systems,” in Proceedings of the ITS America 9th Annual Meeting, ITS America, Washington, DC, USA, 1999.
[105]
P. Green, “Estimating compliance with the 15-second rule for driver-interface bility and safety,” in Proceedings of the Human Factors and Ergonomics Society 43rd Annual Meeting, Santa Monica, Calif, USA, 1999.
[106]
A. Baron and P. Green, “Safety and usability of speech interfaces for in-vehicle tasks while driving: a brief literature review,” Technical Report UMTRI 2006-5, University of Michigan Transportation Research Institute, Ann Arbor, Mich, USA, 2006.
[107]
V. E. Lo and P. Green, “Development and evaluation of automotive speech interfaces: useful information from the human factors and related literature,” International Journal of Vehicular Technology, vol. 2013, Article ID 924170, 13 pages, 2013.
[108]
“Ergonomic aspects of transport information and control systems—dialogue management principles,” ISO 15005, 2002.
[109]
“Ergonomic aspects of transport information and control systems—criteria for determining priority of messages,” ISO TR16951, 2004.
[110]
“Ergonomic aspects of transport information and control systems—visual presentation of information,” ISO 15008, 2009.
[111]
“Ergonomic aspects of transport information and control systems—suitability of TICS while driving,” ISO 17287, 2003.
[112]
“Ergonomic aspects of transport information and control systems—auditory information presentation,” ISO 15006, 2004.
[113]
“Ergonomic aspects of transport information and control systems—simulated lane change test to assess in-vehicle secondary task demand,” ISO 26022, 2010.
[114]
S. Mattes, “The lane-change-task as a tool for driver distraction evaluation,” in Quality of Work and Products in Enterprises of the Future, H. Strasser, K. Kluth, H. Rausch, and H. Bubb, Eds., Erognomia, 2003.
[115]
P. C. Burns, K. Bengler, and D. H. Weir, “Driver metrics and an overview of user needs and uses,” in Performance Metrics for Assessing Driver Distraction: The Quest for Improved Road Safety, G. L. Rupp, Ed., chapter 1, pp. 24–30, SAE International, Warrendale, Pa, USA, 2010.
[116]
A. Kumar, Deadly Combination: Ford, Firestone and Florida, Saint Petersburg Times, Saint Petersburg, Fla, USA, 2001.
[117]
A. Kumar, Attention Shi.s from Fires Tone to Ford Explorer, Saint Petersburg Times, Saint Petersburg, Fla, USA, 2001.
[118]
K. Naab and G. Reichart, “Driver assistance system for lateral and longitudinal vehicle guidance—heading control and active cruise support,” in Proceedings of International Symposium on Advanced Vehicle Control (AVEC '94), pp. S449–S454, Tsukuba, Japan.
[119]
W. Prestl, T. Sauer, J. Steinle, and O. Tschernoster, “The BMW active cruise control ACC,” SAE Technical Paper 2000-01-0344, Society of Automotive Engineers, Warrendale, Pa, USA.
[120]
D. M. Hoedemaeker, Driving with intelligent vehicles. Driving behaviour with adaptive cruise control and the acceptance by individual drivers [Ph.D. thesis], Delft University Press, Delft, The Netherlands, 1999.
[121]
M. P. Heyes and R. Ashworth, “Further research on car-following models,” Transportation Research, vol. 6, no. 3, pp. 287–291, 1972.
[122]
P. Wasielewski, “Car following headways on freeways interpreted by the semi-Poisson headway distribution model,” Transportation Science, vol. 13, no. 1, pp. 36–55, 1979.
[123]
H. Godthelp, P. Milgram, and G. J. Blaauw, “The development of a time-related measure to describe driving strategy,” Human Factors, vol. 26, no. 3, pp. 257–268, 1984.
[124]
W. van Winsum, K. A. Brookhuis, and D. de Waard, “A comparison of different ways to approximate time-to-line crossing (TLC) during car driving,” Accident Analysis and Prevention, vol. 32, no. 1, pp. 47–56, 2000.
[125]
J. C. Hayward, “Near miss determination through use of a scale of danger,” Highway Research Record, vol. 384, pp. 24–34, 1972.
[126]
W. van Winsum and A. Heino, “Choice of time-headway in car-following and the role of time-to-collision information in braking,” Ergonomics, vol. 39, no. 4, pp. 579–592, 1996.
[127]
K. Vogel, “A comparison of headway and time to collision as safety indicators,” Accident Analysis and Prevention, vol. 35, no. 3, pp. 427–433, 2003.
[128]
“Ergonomic aspects of transport information and control systems—introduction to integrating safety critical and time critical warning signals,” ISO TR 12204, 2012.
[129]
I. Totzke, S. Jessberger, D. Mühlbacher, and H. P. Krüger, “Semi-autonomous advanced parking assists: do they really have to be learned if steering is automated?” in Proceedings of European Conference on Human Centered Design for Intelligent Transport Systems, pp. 123–132, Berlin, Germany, 2010.
[130]
M. Kienle, D. Damb?ck, J. Kelsch, F. Flemisch, and K. Bengler, “Towards an H-Mode for highly automated vehicles: driving with side sticks,” in Proceedings of the 1st International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Automotive UI '09), pp. 19–23, September 2009.
[131]
K. Bengler, M. Zimmermann, D. Bortot, M. Kienle, and D. Dambock, “Interaction principles for cooperative human-machine systems,” Information Technology, vol. 54, no. 4, pp. 157–164, 2012.
[132]
T. Inagaki and M. Itoh, “Human’s overtrust in and overreliance on Advanced Driver Assistance Systems: a theoretical framework,” International Journal of Vehicular Technology, vol. 2013, Article ID 951762, 8 pages, 2013.
[133]
D. Popiv, C. Rommerskirchen, M. Rakic, M. Duschl, and K. Bengler, “Effects of assistance of anticipatory driving on driver’s behaviour during deceleration situations,” in Proceedings of the 2nd European Conference on Human Centred Design of Intelligent Transport Systems (HUMANIST '10), Berlin, Germany, April 2010.
[134]
D. Popiv, M. Rakic, F. Laquai, M. Duschl, and K. Bengler, “Reduction of fuel consumption by early anticipation and assistance of deceleration phases,” in Proceedings of the World Automotive Congress of International Federation of Automotive Engineering Societies (FISITA '10), Budapest, Hungary, June 2010.
[135]
S. G. Klauer, T. A. Dingus, V. L. Neale, J. Sudweeks, and D. Ramsey, “The impact of driver inattention on near-crash/crash risk: an analysis using the 100-car naturalistic driving study data,” Technical Report DOT, HS 810 594, U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, USA, 2006.
[136]
R. Ervin, J. Sayer, D. LeBlanc et al., “Automotive collision avoidance system field operational test report: methodology and results,” Technical Report HS 809 900, US Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, USA, 2005.
[137]
J. Sayer, C. Winkler, R. Ervin et al., “Road departure crash warning system field operational test: methodology and results. Volume 1: technical report,” Tech. Rep. UMTRI-2006-9-1, U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, USA, 2006.
[138]
J. Sayer, D. LeBlanc, S. Bogard et al., “Integrated vehicle-based safety systems field operational test final program report,” Technical Report HS 811 482, U.S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, USA, 2011.
[139]
M. Nagai, “Enhancing safety and security by incident analysis using drive recorders,” Review of Automotive Engineering, vol. 27, no. 1, pp. 9–15, 2006.
[140]
T. Sato and M. Akamatsu, “Influence of traffic conditions on driver behavior before making a right turn at an intersection: analysis of driver behavior based on measured data on an actual road,” Transportation Research F, vol. 10, no. 5, pp. 397–413, 2007.
[141]
“Field opErational teSt supporT Action (FESTA),” in FESTA Handbook, European Commission, Brussels, Belgium, 2013, http://www.its.leeds.ac.uk/festa/downloads/FESTA%20Handbook%20v2.pdf.
[142]
T. Sato, M. Akamatsu, A. Takahashi et al., “Analysis of driver behaviour when overtaking with adaptive cruise control,” Review of Automotive Engineering, vol. 26, no. 4, pp. 481–488, 2005.
[143]
S. B. McLaughlin, J. M. Hankey, and T. A. Dingus, “A method for evaluating collision avoidance systems using naturalistic driving data,” Accident Analysis and Prevention, vol. 40, no. 1, pp. 8–16, 2008.
[144]
M. Akamatsu, Y. Sakaguchi, and M. Okuwa, “Modeling of driving behavior when approaching intersection based on measured behavioral data on an actual road,” in Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting, pp. 1895–1899, 2003.
[145]
T. Sato and M. Akamatsu, “Modeling and prediction of driver preparations for making a right turn based on vehicle velocity and traffic conditions while approaching an intersection,” Transportation Research F, vol. 11, no. 4, pp. 242–258, 2008.
[146]
J. D. Lee, D. V. McGehee, T. L. Brown, and M. L. Reyes, “Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulator,” Human Factors, vol. 44, no. 2, pp. 314–334, 2002.
[147]
D. L. Fisher, M. Rizzo, J. Caird, and J. D. Lee, Handbook of Driving Simulation, CRC Press, Boca Raton, Fla, USA, 2011.
[148]
T. Sato, M. Akamatsu, T. Shibata, S. Matsumoto, N. Hatakeyama, and K. Hayama, “Predicting driver behavior using field experiment data and driving simulator experiment data: Assessing impact of elimination of stop regulation at railway crossings,” International Journal of Vehicular Technology, vol. 2013, Article ID 912860, 9 pages, 2013.
[149]
K. L. Young and M. A. Regan, “Driver distraction exposure research: a summary of findings,” in Driver Distraction Theory, Effects, and Mitigation, M. A. Regan, J. D. Lee, and K. L. Young, Eds., pp. 327–328, 2008.
[150]
K. A. Brookhuis, G. de Vries, and D. de Waard, “The effects of mobile telephoning on driving performance,” Accident Analysis and Prevention, vol. 23, no. 4, pp. 309–316, 1991.
[151]
H. Alm and L. Nilsson, “Changes in driver behaviour as a function of handsfree mobile phones—a simulator study,” Accident Analysis and Prevention, vol. 26, no. 4, pp. 441–451, 1994.
[152]
W. J. Horrey and C. D. Wickens, “Examining the impact of cell phone conversations on driving using meta-analytic techniques,” Human Factors, vol. 48, no. 1, pp. 196–205, 2006.
[153]
D. Lamble, T. Kauranen, M. Laakso, and H. Summala, “Cognitive load and detection thresholds in car following situations: safety implications for using mobile (cellular) telephones while driving,” Accident Analysis and Prevention, vol. 31, no. 6, pp. 617–623, 1999.
[154]
D. L. Strayer and W. A. Johnston, “Driven to distraction: dual-task studies of simulated driving and conversing on a cellular telephone,” Psychological Science, vol. 12, no. 6, pp. 462–466, 2001.
[155]
B. Metz, N. Sch?mig, H. P. Krüger, and K. Bengler, “Situation awareness in driving with in-vehicle information systems,” in Performance Metrics for Assessing Driver Distraction: The Quest For Improved Road Safety, G. L. Rupp, Ed., chapter 12, SAE International, Warrendale, Pa, USA, 2010.
[156]
F. A. Drews and D. L. Strayer, “Cellular phone and driver distraction,” in Driver Distraction Theory, Effects, and Mitigation, M. Regan, J. Lee, and K. Young, Eds., pp. 169–190, CRC Press, Boca Raton, Fla, USA, 2008.
[157]
M. Vollrath, T. Meilinger, and H. P. Krüger, “How the presence of passengers influences the risk of a collision with another vehicle,” Accident Analysis and Prevention, vol. 34, no. 5, pp. 649–654, 2002.
[158]
J. R. Davis and C. M. Schmandt, “The back seat driver: real time spoken driving instructions,” in Proceedings of the IEEE Vehicle Navigation and Information Systems Conference (VNIS '89), pp. 146–150, September 1989.
[159]
M. Akamatsu and M. Kitajima, “Designing products and services based on understanding human cognitive behavior—development of cognitive chrono-ethnography for synthesiological research,” Synthesiology (English Edition), vol. 4, no. 3, pp. 144–155, 2012.
[160]
B. Brown, E. Laurier, H. Lorimer et al., “Driving and “passengering”: Notes on the ordinary organization of car travel,” Mobilities, vol. 3, no. 1, pp. 1–23, 2008.
[161]
K. Bengler, J. F. Coughlin, B. Reimer, and B. Niedermaier, “A new method to investigate cognitive structures of user’s on automotive functionalities,” in Proceedings of the 3rd International Conference on Applied Human Factors and Ergonomics (AHFE '10), Miami, Fla, USA, July 2010.
[162]
B. Brown and E. Laurier, “The normal, natural troubles of driving with GPS,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12), pp. 1621–1630, New York, NY, USA, 2012.
[163]
ITU-T FG Distraction P.UIA report, FG Distraction report on User Interface requirements for Automotive applications (P.UIA).
[164]
ITU-T FG Distraction G.V2A report, FG Distraction report on communications interface between external applications and a Vehicle Gateway Platform (G.V2A).
H. Hatakenaka, H. Kanoshima, T. Aya, S. Nishi, H. Mizutani, and K. Nagano, “Development and verification of effectiveness of an AHS,” in Proceedings of ITS World Congress, New York, NY, USA, 2008.
[167]
M. Hatakeyama and S. Nakayama, “Progress toward the practical use of vehicle infrastructure cooperation system,” in Proceedings of ITS World Congress, Stochholm, Sweden, 2009.
[168]
K. Daimon, H. Makino, H. Mizutani, and Y. Munehiro, “Study on safety assist information of Advanced Cruise-Assist Highway Systems (AHS) using VICS in blind curve section of urban expressway,” Journal of Mechanical Systems For Transportation and Logistics, vol. 1, no. 2, pp. 192–202, 2006.
[169]
U. S. Department of Transportation, “Safety Pilot Program Overview,” http://www.its.dot.gov/safety_pilot/index.htm.
[170]
D. Popiv, C. Rommerskirchen, M. Rakic, M. Duschl, and K. Bengler, “Effects of assistance of anticipatory driving on driver’s behaviour during deceleration situations,” in Proceedings of the 2nd European Conference on Human Centered Design of Intelligent Transport Systems (HUMANIST '10), Berlin, Germany, April 2010.
[171]
S. Thrun, M. Monemerlo, H. Dahlkamp et al., “Stanley the robot that won the DARPA grand challenge,” in DARPA Grand Challenge: The Great Robot Race, M. Buehler, K. Iagnemma, and S. Singh, Eds., vol. 36 of Springer Tracts in Advanced Robotics, pp. 1–43, 2007.
[172]
T. Nothdurft, P. Hecker, S. Ohl et al., “Stadtpilot: first fully autonomous test drives in urban traffic,” in Proceedings of the 14th International IEEE Annual Conference on Intelligent Transportation Systems, Washington, DC, USA, 2011.
[173]
T. A. Ranney, “Models of driving behavior: a review of their evolution,” Accident Analysis and Prevention, vol. 26, no. 6, pp. 733–750, 1994.
[174]
D. D. Salvucci, “Modeling driver behavior in a cognitive architecture,” Human Factors, vol. 48, no. 2, pp. 362–380, 2006.
[175]
C. P. Cacciabue, Ed., Modelling Driver Behaviour in Automotive Environment: Critical Issues in Driver Interactions with Intelligent Transport Systems, Springer, London, UK, 2007.
[176]
L. Evans, Traffic Safety and the Driver, Van Nostrand Reinhold, New York, NY, USA, 1991.
[177]
B. Peacock and W. Karwowski, Eds., Automotive Ergonomics, Taylor & Francis, London, UK, 1993.
[178]
M. Sivak, M. J. Flannagan, and B. Schoettle, “Driver assessment and training in the 1980s and 1990s: an analysis of the most-cited publications,” in Proceedings of the Driving Assessment Conference, 2001.
[179]
J. D. Lee, “Fifty years of driving safety research,” Human Factors, vol. 50, no. 3, pp. 521–528, 2008.
[180]
H. H. Braess and U. Seiffert, Eds., Handbuch Kraftfahrzeugtechnik. 6. Auflage, Vieweg and Teubner, Wiesbaden, Germany, 2011.
[181]
N. Gkikas, Automotive Ergonomics: Driver-Vehicle Interaction, CRC Press, Boca Raton, Fla, USA, 2012.
[182]
V. D. Bhise, Ergonomics in the Automotive Design Process, CRC Press, Boca Raton, Fla, USA, 2012.