|
Stability Control of Vehicle Emergency Braking with Tire BlowoutDOI: 10.1155/2014/436175 Abstract: For the stability control and slowing down the vehicle to a safe speed after tire failure, an emergency automatic braking system with independent intellectual property is developed. After the system has received a signal of tire blowout, the automatic braking mode of the vehicle is determined according to the position of the failure tire and the motion state of vehicle, and a control strategy for resisting tire blowout additional yaw torque and deceleration is designed to slow down vehicle to a safe speed in an expected trajectory. The simulating test system is also designed, and the testing results show that the vehicle can be quickly stabilized and kept in the original track after tire blowout with the emergency braking system described in the paper. 1. Introduction Tire blowout is one of the main factors which cause the fatal traffic accidents. Currently, the tire pressure monitoring system (TPMS) is popularly equipped on vehicles to prevent low tire pressure and avoid tire failure accidents. But it can only remind the driver of slow tire pressure failure [1]. For the situation of urgent tire blowout, the characteristics of vehicle motion will be changed after tire blowout. It is easy to cause the driver’s rush irritability operation [2]; once the driver is operating improperly, the vehicle will be severely side slipped, drifted, and even overturned. So it is useful to develop an emergency braking system to slow down the velocity of the vehicle automatically and smoothly [3–5]. A tire blowout automatic braking system is developed, which can slow down the vehicle automatically to a safe speed and stop the vehicle before going out of the driver’s control. By using this system, it can offset the driver’s delayed braking and help the tire-failed vehicle slow down safely. 2. Tire Failure Emergency Braking System The emergency braking system for tire blowout is shown in Figure 1. Based on the electrohydraulic braking system (EHB), a yaw rate signal from the yaw rate sensor and the tire blowout signal input are added. The automatic braking is realized by the control unit driving the brake motor pump and each related electromagnetic valve to brake after receiving the tire blowout signal. According to the yaw rate and the deviation, the braking state of the vehicle is determined, then the pressure of each cylinder is determined, and the related differential braking is carried out to control the vehicle moving stability. With the wheel speed signals, the slip rate of each wheel is calculated, and the related wheel cylinder valves are driven to carry out
|