Introduction. Ruptured abdominal aortic aneurysm (rAAA) causes a significant inflammatory response. The study aims to investigate this response following endovascular and open repair of ruptured AAA. Patients and Methods. Consecutive rAAA patients had either endovascular aneurysm repair (EVAR) or open repair (OR). Blood samples were taken for cytokines, lipid hydroperoxides (LOOH), antioxidants, and neutrophil elastase/α1-anti-trypsin complexes (NE/AAT) before surgery, 6 hours after clamp release and 1, 3, 5 days postoperatively. Results. 30 patients were included in the study, with 14 undergoing eEVAR and 16 eOR, with comparable baseline comorbidities, age, and parameters. IL-6 peaked higher in eOR patients ( ), while p75TNFr was similar between groups except at day 5 ( ). The NE/AAT concentrations were higher in eOR patients ( ), particularly in the first postoperative day, and correlated with blood ( , ) and platelet ( , ) volume transfused. C-reactive protein rose and lipid hydroperoxide fell in both groups without significant intergroup difference. Vitamins C and E, lycopene, and β-carotene levels were similar between groups. Conclusion. EVAR is associated with lower systemic inflammatory response compared to OR. Its increased future use may thereby improve outcomes for patients. 1. Introduction Ischaemia-reperfusion injury plays an important role in the development of multiorgan failure following abdominal aortic aneurysm (AAA) repair. Shock in ruptured aneurysm (rAAA) results in global ischemia, and reestablishing the blood supply can cause further tissue injury due to the generation of oxygen-derived free radicals [1]. Normally the reactive oxygen species (ROS) are produced in small amounts via aerobic metabolic pathways, with a fine balance between the prooxidants and antioxidants. ROS damage cellular molecules leading to DNA fragmentation, membrane damage and lipid peroxidation, and consequently to cell death [2, 3]. Lipid peroxidation produces lipid hydroperoxide (LOOH), thus damaging the vascular endothelium, with increased capillary permeability to protein and consequently tissue oedema and renal albumin excretion [4, 5]. Activation of the arachidonic acid cascade leads to the generation of thromboxanes, prostaglandins, and leukotrienes. These are potent platelet and neutrophil activators, and vasoconstrictors [6, 7]. Neutrophil-dependent injury, important in the genesis of SIRS and MODS, is characterised by the adhesion of activated polymorphonuclear neutrophils (PMNs) to endothelium and their release of metabolites, resulting in capillary
References
[1]
E. A. Deitch, “Multiple organ failure: pathophysiology and potential future therapy,” Annals of Surgery, vol. 216, no. 2, pp. 117–134, 1992.
[2]
H. Sies and W. Stahl, “Vitamins E and C, β-carotene, and other carotenoids as antioxidants,” American Journal of Clinical Nutrition, vol. 62, no. 6, supplement, pp. 1315S–1321S, 1995.
[3]
K. B. Beckman and B. N. Ames, “The free radical theory of aging matures,” Physiological Reviews, vol. 78, no. 2, pp. 547–581, 1998.
[4]
B. Halliwell, S. Chirico, M. A. Crawford, K. S. Bjerve, and K. F. Gey, “Lipid peroxidation: its mechanism, measurement, and significance,” American Journal of Clinical Nutrition, vol. 57, no. 5, supplement, pp. 715S–724S, 1993.
[5]
N. C. Hickey, O. Hudlicka, P. Gosling, C. P. Shearman, and M. H. Simms, “Intermittent claudication incites systemic neutrophil activation and increased vascular permeability,” British Journal of Surgery, vol. 80, no. 2, pp. 181–184, 1993.
[6]
M. B. Grisham, L. Anzueto Hernandez, and D. N. Granger, “Xanthine oxidase and neutrophil infiltration in intestinal ischemia,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 251, no. 4, pp. G567–G574, 1986.
[7]
P. J. Spagnuolo, J. J. Ellner, A. Hassid, and M. J. Dunn, “Thromboxane A2 mediates augmented polymorphonuclear leukocyte adhesiveness,” Journal of Clinical Investigation, vol. 66, no. 3, pp. 406–414, 1980.
[8]
S. J. Weiss, “Tissue destruction by neutrophils,” New England Journal of Medicine, vol. 320, no. 6, pp. 365–376, 1989.
[9]
H. Tanaka, H. Sugimoto, T. Yoshioka, and T. Sugimoto, “Role of granulocyte elastase in tissue injury in patients with septic shock complicated by multiple-organ failure,” Annals of Surgery, vol. 213, no. 1, pp. 81–85, 1991.
[10]
S. Fujishima, H. Morisaki, A. Ishizaka et al., “Neutrophil elastase and systemic inflammatory response syndrome in the initiation and development of acute lung injury among critically ill patients,” Biomedicine and Pharmacotherapy, vol. 62, no. 5, pp. 333–338, 2008.
[11]
L. L. Lau, K. R. Gardiner, L. Martin et al., “Extraperitoneal approach reduces neutrophil activation, systemic inflammatory response and organ dysfunction in aortic aneurysm surgery,” European Journal of Vascular and Endovascular Surgery, vol. 21, no. 4, pp. 326–333, 2001.
[12]
P. G. H. Metnitz, C. Bartens, M. Fischer, P. Fridrich, H. Steltzer, and W. Druml, “Antioxidant status in patients with acute respiratory distress syndrome,” Intensive Care Medicine, vol. 25, no. 2, pp. 180–185, 1999.
[13]
A. Brown, S. Dugdill, M. Wyatt, and D. Mantle, “Serum total antioxidant status during vascular surgery,” Biochemical Society Transactions, vol. 26, no. 2, article S127, 1998.
[14]
D. D. M. Wayner, G. W. Burton, K. U. Ingold, L. R. C. Barclay, and S. J. Locke, “The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma,” Biochimica et Biophysica Acta, vol. 924, no. 3, pp. 408–419, 1987.
[15]
P. Di Mascio, S. Kaiser, and H. Sies, “Lycopene as the most efficient biological carotenoid singlet oxygen quencher,” Archives of Biochemistry and Biophysics, vol. 274, no. 2, pp. 532–538, 1989.
[16]
R. R. Makar, S. A. Badger, M. E. O'Donnell, W. Loan, L. L. Lau, and C. V. Soong, “The effects of abdominal compartment hypertension after open and endovascular repair of a ruptured abdominal aortic aneurysm,” Journal of Vascular Surgery, vol. 49, no. 4, pp. 866–872, 2009.
[17]
R. M. H. Roumen, T. Hendriks, J. Van der Ven-Jongekrijg et al., “Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma: relation with subsequent adult respiratory distress syndrome and multiple organ failure,” Annals of Surgery, vol. 218, no. 6, pp. 769–776, 1993.
[18]
R. G. Holzheimer, J. Gross, and M. Schein, “Pro- and anti-inflammatory cytokine-response in abdominal aortic aneurysm repair: a clinical model of ischemia-reperfusion,” Shock, vol. 11, no. 5, pp. 305–310, 1999.
[19]
A. Cabie, J.-C. Farkas, C. Fitting et al., “High levels of portal TNF-α during abdominal aortic surgery in man,” Cytokine, vol. 5, no. 5, pp. 448–453, 1993.
[20]
T. E. Rowlands and S. Homer-Vanniasinkam, “Pro- and anti-inflammatory cytokine release in open versus endovascular repair of abdominal aortic aneurysm,” British Journal of Surgery, vol. 88, no. 10, pp. 1335–1340, 2001.
[21]
M. G. Mythen, G. Purdy, I. J. Mackie, T. McNally, A. R. Webb, and S. J. Machin, “Postoperative multiple organ dysfunction syndrome associated with gut mucosal hypoperfusion, increased neutrophil degranulation and C1-esterase inhibitor depletion,” British Journal of Anaesthesia, vol. 71, no. 6, pp. 858–863, 1993.
[22]
P. Swartbol, L. Truedsson, and L. Norgren, “Adverse reactions during endovascular treatment of aortic aneurysms may be triggered by interleukin 6 release from the thrombotic content,” Journal of Vascular Surgery, vol. 28, no. 4, pp. 664–668, 1998.
[23]
M. M. Thompson, A. Nasim, R. D. Sayers et al., “Oxygen free radical and cytokine generation during endovascular and conventional aneurysm repair,” European Journal of Vascular and Endovascular Surgery, vol. 12, no. 1, pp. 70–75, 1996.
[24]
D. McCrory, C. Weir, I. Halliday et al., “The reliability of endotoxin and cytokine measurements in polytrauma patients and their relationship to the development of sepsis,” Intensive Care Medicine, vol. 20, no. 6, article 461, 1994.
[25]
D. J. Adam, A. J. Lee, C. V. Ruckley, A. W. Bradbury, and J. A. Ross, “Elevated levels of soluble tumor necrosis factor receptors are associated with increased mortality rates in patients who undergo operation for ruptured abdominal aortic aneurysm,” Journal of Vascular Surgery, vol. 31, no. 3, pp. 514–519, 2000.
[26]
M. B. Welborn, H. S. A. Oldenburg, P. J. Hess et al., “The relationship between visceral ischemia, proinflammatory cytokines, and organ injury in patients undergoing thoracoabdominal aortic aneurysm repair,” Critical Care Medicine, vol. 28, no. 9, pp. 3191–3197, 2000.
[27]
L. J. Magnotti, J. S. Upperman, D.-Z. Xu, Q. Lu, and E. A. Deitch, “Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock,” Annals of Surgery, vol. 228, no. 4, pp. 518–527, 1998.
[28]
M. C. Barry, C. Kelly, P. Burke, S. Sheehan, H. P. Redmond, and D. Bouchier-Hayes, “Immunological and physiological responses to aortic surgery: effect of reperfusion on neutrophil and monocyte activation and pulmonary function,” British Journal of Surgery, vol. 84, no. 4, pp. 513–519, 1997.
[29]
M. R. W. Grotz, E. A. Deitch, J. Ding, D. Xu, Q. Huang, and G. Regel, “Intestinal cytokine response after gut ischemia: role of gut barrier failure,” Annals of Surgery, vol. 229, no. 4, pp. 478–486, 1999.
[30]
Y. Haga, T. Beppu, K. Doi et al., “Systemic inflammatory response syndrome and organ dysfunction following gastrointestinal surgery,” Critical Care Medicine, vol. 25, no. 12, pp. 1994–2000, 1997.
[31]
I. Syk, J. Brunkwall, K. Ivancev et al., “Postoperative fever, bowel ischaemia and cytokine response to abdominal aortic aneurysm repair—a comparison between endovascular and open surgery,” European Journal of Vascular and Endovascular Surgery, vol. 15, no. 5, pp. 398–405, 1998.
[32]
S. Argüelles, S. García, M. Maldonado, A. Machado, and A. Ayala, “Do the serum oxidative stress biomarkers provide a reasonable index of the general oxidative stress status?” Biochimica et Biophysica Acta, vol. 1674, no. 3, pp. 251–259, 2004.
[33]
T. Yoshikawa, M. Yasuda, S. Ueda et al., “Vitamin E in gastric mucosal injury induced by ischemia-reperfusion,” American Journal of Clinical Nutrition, vol. 53, no. 1, supplement, pp. 210S–214S, 1991.
[34]
G. P. Novelli, C. Adembri, E. Gandini et al., “Vitamin E protects human skeletal muscle from damage during surgical ischemia-reperfusion,” American Journal of Surgery, vol. 173, no. 3, pp. 206–209, 1997.