全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Patient Perspective on Use of an Interactive Website for Sleep Apnea

DOI: 10.1155/2013/239382

Full-Text   Cite this paper   Add to My Lib

Abstract:

Incomplete patient adherence with nasal continuous positive airway pressure (CPAP) limits the effectiveness of treatment and results in suboptimal obstructive sleep apnea (OSA) outcomes. An interactive website specifically designed for patients with OSA was designed and utilized in a randomized clinical trial to test its effect on increasing CPAP adherence. The goal of this paper is to report on CPAP adherence, internet use, privacy concerns and user satisfaction in using the website. The original project was designed as a randomized, controlled clinical trial of Usual Care (UC, control) versus MyCPAP group (intervention). Questionnaires were administered to evaluate the patient perspective of using the MyCPAP website. Participation in the MyCPAP intervention resulted in higher CPAP adherence at the two-month time point relative to participation in the UC group (3.4??±??2.4 and 4.1??±??2.3?hrs/nt; ; mean??±??SD). Participants randomized to the MyCPAP website increased their use of the internet to obtain OSA related information, but did not increase their use of the internet to get information on general health or medical conditions. Users had very little concern about their CPAP data being viewed daily or being sent over the internet. Future studies should consider the use of newer evaluation criteria for collaborative adaptive interactive technologies. 1. Introduction Obstructive sleep apnea (OSA) is a disorder characterized by repeated cessations of breathing during sleep, which can result in a number of potentially serious consequences affecting cardiovascular, physiological, neurocognitive, emotional, and psychosocial functioning [1]. OSA is the most common sleep disorder, affecting about 4% of men and 2% of women aged from 30 to 70 years old in the USA [2]. OSA is a chronic disease that is estimated to contribute 3 billion in additional medical costs in the USA, with a total economic burden greater than 100 billion when including loss of workplace productivity, occupational injury, and greater health care utilization [3]. In addition to its economic burden, OSA is associated with serious long-term adverse health consequences such as hypertension [4], metabolic dysfunction [5], cardiovascular disease [6], neurocognitive deficits [7], and motor vehicle accidents [8]. Nasal continuous positive airway pressure (CPAP) [9] is the treatment of choice for OSA [10], with meta-analytic reports of numerous randomized controlled trials showing that CPAP improves both objectively and subjectively measured daytime sleepiness [11] as well as health-related

References

[1]  A. G. Bassiri and C. Guilleminault, “Clinical features and evaluation of obstructive sleep apnea-hypopnea syndrome,” in Principle and Practice of Sleep Medicine, M. Kryger, T. Roth, and W. C. Dement, Eds., pp. 869–878, W.B. Saunders, Philadelphia, Pa, USA, 2000.
[2]  T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, “The occurrence of sleep-disordered breathing among middle-aged adults,” The New England Journal of Medicine, vol. 328, no. 17, pp. 1230–1235, 1993.
[3]  N. Alghanim, V. R. Comondore, J. Fleetham, C. A. Marra, and N. T. Ayas, “The economic impact of obstructive sleep apnea,” Lung, vol. 186, no. 1, pp. 7–12, 2008.
[4]  A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report,” Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003.
[5]  S. K. Sharma, S. Agrawal, D. Damodaran, et al., “CPAP for the metabolic syndrome in patients with obstructive sleep apnea,” The New England Journal of Medicine, vol. 365, no. 24, pp. 2277–2286, 2011.
[6]  K. Monahan and S. Redline, “Role of obstructive sleep apnea in cardiovascular disease,” Current Opinion in Cardiology, vol. 26, no. 6, pp. 541–547, 2011.
[7]  B. El-Ad and P. Lavie, “Effect of sleep apnea on cognition and mood,” International Review of Psychiatry, vol. 17, no. 4, pp. 277–282, 2005.
[8]  A. T. Mulgrew, G. Nasvadi, A. Butt et al., “Risk and severity of motor vehicle crashes in patients with obstructive sleep apnoea/hypopnoea,” Thorax, vol. 63, no. 6, pp. 536–541, 2008.
[9]  C. E. Sullivan, F. G. Issa, M. Berthon-Jones, and L. Eves, “Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares,” The Lancet, vol. 1, no. 8225, pp. 862–865, 1981.
[10]  D. I. Loube, P. C. Gay, K. P. Strohl, A. I. Pack, D. P. White, and N. A. Collop, “Indications for positive airway pressure treatment of adult obstructive sleep apnea patients: a consensus statement,” Chest, vol. 115, no. 3, pp. 863–866, 1999.
[11]  S. R. Patel, D. P. White, A. Malhotra, M. L. Stanchina, and N. T. Ayas, “Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea results of a meta-analysis,” Archives of Internal Medicine, vol. 163, no. 5, pp. 565–571, 2003.
[12]  J. Wright, R. Johns, I. Watt, A. Melville, and T. Sheldon, “Health effects of obstructive sleep apnoea and the effectiveness of continuous positive airways pressure: a systematic review of the research evidence,” British Medical Journal, vol. 314, no. 7084, pp. 851–860, 1997.
[13]  N. McArdle, R. Kingshott, H. M. Engleman, T. W. Mackay, and N. J. Douglas, “Partners of patients with sleep apnoea/hypopnoea syndrome: effect of CPAP treatment on sleep quality and quality of life,” Thorax, vol. 56, no. 7, pp. 513–518, 2001.
[14]  J. C. T. Pepperell, S. Ramdassingh-Dow, N. Crosthwaite et al., “Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial,” The Lancet, vol. 359, no. 9302, pp. 204–210, 2002.
[15]  A. Bahammam, K. Delaive, J. Ronald, J. Manfreda, L. Roos, and M. H. Kryger, “Health care utilization in males with obstructive sleep apnea syndrome two years after diagnosis and treatment,” Sleep, vol. 22, no. 6, pp. 740–747, 1999.
[16]  A. M. Sawyer, N. S. Gooneratne, C. L. Marcus, D. Ofer, K. C. Richards, and T. E. Weaver, “A systematic review of CPAP adherence across age groups: clinical and empiric insights for developing CPAP adherence interventions,” Sleep Medicine Reviews, vol. 15, no. 6, pp. 343–356, 2011.
[17]  C. J. Hoy, M. Vennelle, R. N. Kingshott, H. M. Engleman, and N. J. Douglas, “Can intensive support improve continuous positive airway pressure use in patients with the sleep apnea/hypopnea syndrome?” American Journal of Respiratory and Critical Care Medicine, vol. 159, no. 4, pp. 1096–1100, 1999.
[18]  D. S. C. Hui, J. K. W. Chan, D. K. L. Choy et al., “Effects of augmented continuous positive airway pressure education and support on compliance and outcome in a Chinese population,” Chest, vol. 117, no. 5, pp. 1410–1416, 2000.
[19]  P. Collard, T. Pieters, G. Aubert, P. Delguste, and D. O. Rodenstein, “Compliance with nasal CPAP in obstructive sleep apnea patients,” Sleep Medicine Reviews, vol. 1, no. 1, pp. 33–44, 1997.
[20]  H. M. Engleman and M. R. Wild, “Improving CPAP use by patients with the sleep apnoea/hypopnoea syndrome (SAHS),” Sleep Medicine Reviews, vol. 7, no. 1, pp. 81–99, 2003.
[21]  M. Haniffa, T. J. Lasserson, and I. Smith, “Interventions to improve compliance with continuous positive airway pressure for obstructive sleep apnoea,” Cochrane Database of Systematic Reviews (Online), no. 4, Article ID CD003531, 2004.
[22]  N. B. Kribbs, A. I. Pack, L. R. Kline et al., “Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea,” American Review of Respiratory Disease, vol. 147, no. 4, pp. 887–895, 1993.
[23]  R. N. Kingshott, M. Vennelle, C. J. Hoy, H. M. Engleman, I. J. Deary, and N. J. Douglas, “Predictors of improvements in daytime function outcomes with CPAP therapy,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 3, part 1, pp. 866–871, 2000.
[24]  N. Pelletier-Fleury, D. Rakotonanahary, and B. Fleury, “The age and other factors in the evaluation of compliance with nasal continuous positive airway pressure for obstructive sleep apnea syndrome. A Cox's proportional hazard analysis,” Sleep Medicine, vol. 2, no. 3, pp. 225–232, 2001.
[25]  C. J. Stepnowsky, M. R. Marler, and S. Ancoli-Israel, “Determinants of nasal CPAP compliance,” Sleep Medicine, vol. 3, no. 3, pp. 239–247, 2002.
[26]  M. S. Aloia, J. T. Arnedt, C. Stepnowsky, J. Hecht, and B. Borrelli, “Predicting treatment adherence in obstructive sleep apnea using principles of behavior change,” Journal of Clinical Sleep Medicine, vol. 1, no. 4, pp. 346–353, 2005.
[27]  M. R. Wild, H. M. Engleman, N. J. Douglas, and C. A. Espie, “Can psychological factors help us to determine adherence to CPAP? A prospective study,” European Respiratory Journal, vol. 24, no. 3, pp. 461–465, 2004.
[28]  C. J. Stepnowsky, J. J. Palau, A. L. Gifford, and S. Ancoli-Israel, “A self-management approach to improving continuous positive airway pressure adherence and outcomes,” Behavioral Sleep Medicine, vol. 5, no. 2, pp. 131–146, 2007.
[29]  Project PIAL, “Internet activities,” October 1, 2008, http://www.pewinternet.org/trends/Internet_Activities_7.22.08.aspx.
[30]  S. Fox, “The Social Life of Health Information, 2011, Pew Research Center’s Internet & American Life Project,” 2012, http://pewinternet.org/Reports/2011/Social-Life-of-Health-Info.aspx.
[31]  J. Fox, E. Black, I. Chronakis et al., “From guidelines to careflows: modelling and supporting complex clinical processes,” Studies in Health Technology and Informatics, vol. 139, pp. 44–62, 2008.
[32]  N. Pletneva, S. Cruchet, M. A. Simonet, M. Kajiwara, and C. Boyer, “Results of the 10 HON survey on health and medical internet use,” Studies in Health Technology and Informatics, vol. 169, pp. 73–77, 2011.
[33]  S. R. Tunis, D. B. Stryer, and C. M. Clancy, “Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy,” Journal of the American Medical Association, vol. 290, no. 12, pp. 1624–1632, 2003.
[34]  AASM, “Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research.The Report of an American Academy of Sleep Medicine Task Force,” Sleep, vol. 22, no. 5, pp. 667–689, 1999.
[35]  M. W. Johns, “A new method for measuring daytime sleepiness: the Epworth sleepiness scale,” Sleep, vol. 14, no. 6, pp. 540–545, 1991.
[36]  W. W. Flemons, “Measuring health related quality of life in sleep apnea,” Sleep, vol. 23, supplement 4, pp. S109–S114, 2000.
[37]  W. W. Flemons and M. A. Reimer, “Development of a disease-specific health-related quality of life questionnaire for sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 2, pp. 494–503, 1998.
[38]  L. S. Radloff, “The CES-D scale: a self-report depression scale for research in the general population,” Applied Psychological Measurement, vol. 1, pp. 385–401, 1977.
[39]  E. M. Andresen, J. A. Malmgren, W. B. Carter, and D. L. Patrick, “Screening for depression in well older adults: evaluation of a short form of the CES-D,” American Journal of Preventive Medicine, vol. 10, no. 2, pp. 77–84, 1994.
[40]  H. I. Goldberg, J. D. Ralston, I. B. Hirsch, J. I. Hoath, and K. I. Ahmed, “Using an Internet comanagement module to improve the quality of chronic disease care,” Joint Commission Journal on Quality and Safety, vol. 29, no. 9, pp. 443–451, 2003.
[41]  J. E. Ware Jr. and R. D. Hays, “Methods for measuring patient satisfaction with specific medical encounters,” Medical Care, vol. 26, no. 4, pp. 393–402, 1988.
[42]  K. R. Lorig and H. R. Holman, “Self-management education: history, definition, outcomes, and mechanisms,” Annals of Behavioral Medicine, vol. 26, no. 1, pp. 1–7, 2003.
[43]  E. M. Wickwire, M. T. Smith, S. Birnbaum, and N. A. Collop, “Sleep maintenance insomnia complaints predict poor CPAP adherence: a clinical case series,” Sleep Medicine, vol. 11, no. 8, pp. 772–776, 2010.
[44]  C. McDaid, K. H. Durée, S. C. Griffin et al., “A systematic review of continuous positive airway pressure for obstructive sleep apnoea-hypopnoea syndrome,” Sleep Medicine Reviews, vol. 13, no. 6, pp. 427–436, 2009.
[45]  T. Zamora and C. J. Stepnowsky, “Surfing for sleep apnea: a review of the quality of information for patients on the internet,” Sleep, vol. 32, pp. 225–226, 2009.
[46]  J. J. Seidman, D. Steinwachs, and H. R. Rubin, “Design and testing of a tool for evaluating the quality of diabetesconsumer-information web sites,” Journal of Medical Internet Research, vol. 5, no. 4, p. e30, 2003.
[47]  S. A. Adams, “Revisiting the online health information reliability debate in the wake of “web 2.0”: an inter-disciplinary literature and website review,” International Journal of Medical Informatics, vol. 79, no. 6, pp. 391–400, 2010.
[48]  L. O'Grady, H. Witteman, J. L. Bender, S. Urowitz, D. Wiljer, and A. R. Jadad, “Measuring the impact of a moving target: towards a dynamic framework for evaluating collaborative adaptive interactive technologies,” Journal of Medical Internet Research, vol. 11, no. 2, p. e20, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133