The purpose of this study was to validate a previously developed heart failure readmission predictive algorithm based on psychosocial factors, develop a new model based on patient-reported symptoms from a telemonitoring program, and assess the impact of weight fluctuations and other factors on hospital readmission. Clinical, demographic, and telemonitoring data was collected from 100 patients enrolled in the Partners Connected Cardiac Care Program between July 2008 and November 2011. 38% of study participants were readmitted to the hospital within 30 days. Ten different heart-failure-related symptoms were reported 17,389 times, with the top three contributing approximately 50% of the volume. The psychosocial readmission model yielded an AUC of 0.67, along with sensitivity 0.87, specificity 0.32, positive predictive value 0.44, and negative predictive value 0.8 at a cutoff value of 0.30. In summary, hospital readmission models based on psychosocial characteristics, standardized changes in weight, or patient-reported symptoms can be developed and validated in heart failure patients participating in an institutional telemonitoring program. However, more robust models will need to be developed that use a comprehensive set of factors in order to have a significant impact on population health. 1. Introduction Several predictive models can identify the risk status of patients with heart failure [1]. However, predictors used in those models are often not actionable, as they are typically based on demographic (e.g., age, race/ethnicity) or clinical data (e.g., medical history, billing or laboratory data). In our previous work, we aimed to identify a subset of high-risk patients with reversible risk factors, as our goal was to prevent their readmission by connecting those patients to appropriate interventions. Since psychosocial factors might be a root cause for cardiac decompensation, we set ourselves to develop a multivariable logistic regression model based on psychosocial predictors [2]. In that work, we identified 5 psychosocial predictors “dementia,” “depression,” “adherence,” “declining/refusal of services,” and “missed clinical appointments” as significant predictors of readmission [2]. Similarly, patient-reported symptoms and other factors collected by a telemonitoring system could potentially serve as reversible predictors to eventually strengthen our original model. In fact, body weight gain among heart failure patients is already a known factor linked to early readmissions [3]. Telemonitoring is a promising innovation that allows clinicians to monitor
References
[1]
J. S. Ross, G. K. Mulvey, B. Stauffer et al., “Statistical models and patient predictors of readmission for heart failure: a systematic review,” Archives of Internal Medicine, vol. 168, no. 13, pp. 1371–1386, 2008.
[2]
A. J. Watson, J. O'Rourke, K. Jethwani, et al., “Linking electronic health record-extracted psychosocial data in real-time to risk of readmission for heart failure,” Psychosomatics, vol. 52, no. 4, pp. 319–327, 2011.
[3]
J. E. A. Blair, S. Khan, M. A. Konstam et al., “Weight changes after hospitalization for worsening heart failure and subsequent re-hospitalization and mortality in the EVEREST trial,” European Heart Journal, vol. 30, no. 13, pp. 1666–1673, 2009.
[4]
S. D. Anker, F. Koehler, and W. T. Abraham, “Telemedicine and remote management of patients with heart failure,” The Lancet, vol. 378, no. 9792, pp. 731–739, 2011.
[5]
F. Koehler, S. Winkler, M. Schieber et al., “Impact of remote telemedical management on mortality and hospitalizations in ambulatory patients with chronic heart failure: the telemedical interventional monitoring in heart failure study,” Circulation, vol. 123, no. 17, pp. 1873–1880, 2011.
[6]
S. C. Inglis, R. A. Clark, F. A. McAlister et al., “Structured telephone support or telemonitoring programmes for patients with chronic heart failure,” Cochrane Database of Systematic Reviews, vol. 8, Article ID CD007228, 2010.
[7]
S. I. Chaudhry, J. A. Mattera, J. P. Curtis et al., “Telemonitoring in patients with heart failure,” New England Journal of Medicine, vol. 363, no. 24, pp. 2301–2309, 2010.
[8]
A. S. Desai, “Does home monitoring heart failure care improve patient outcomes? Home monitoring heart failure care does not improve patient outcomes looking beyond telephone-based disease management,” Circulation, vol. 125, no. 6, pp. 828–836, 2012.
[9]
J. Zhang, K. M. Goode, P. E. Cuddihy, and J. G. F. Cleland, “Predicting hospitalization due to worsening heart failure using daily weight measurement: analysis of the Trans-European Network-Home-Care Management System (TEN-HMS) study,” European Journal of Heart Failure, vol. 11, no. 4, pp. 420–427, 2009.
[10]
S. I. Chaudhry, Y. Wang, J. Concato, T. M. Gill, and H. M. Krumholz, “Patterns of weight change preceding hospitalization for heart failure,” Circulation, vol. 116, no. 14, pp. 1549–1554, 2007.
[11]
A. R. Feinstein, M. B. Fisher, and J. G. Pigeon, “Changes in dyspnea-fatigue ratings as indicators of quality of life in the treatment of congestive heart failure,” American Journal of Cardiology, vol. 64, no. 1, pp. 50–55, 1989.
[12]
M. Kato, L. W. Stevenson, M. Palardy et al., “The worst symptom as defined by patients during heart failure hospitalization: implications for response to therapy,” Journal of Cardiac Failure, vol. 18, no. 7, pp. 524–533, 2012.
[13]
S. Howell, M. Coory, J. Martin, and S. Duckett, “Using routine inpatient data to identify patients at risk of hospital readmission,” BMC Health Services Research, vol. 9, article 96, 2009.
[14]
A. G. Au, F. A. McAlister, J. A. Bakal, P. Kaul, and C. Van Walraven, “Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization,” American Heart Journal, vol. 164, no. 3, pp. 365–372, 2012.
[15]
L. Wang, B. Porter, C. Maynard et al., “Predicting risk of hospitalization or death among patients with heart failure in the veterans health administration,” American Journal of Cardiology, vol. 110, no. 9, pp. 1342–1349, 2012.
[16]
W. T. Abraham, P. B. Adamson, R. C. Bourge et al., “Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial,” The Lancet, vol. 377, no. 9766, pp. 658–666, 2011.
[17]
A. F. Hernandez, M. A. Greiner, G. C. Fonarow et al., “Relationship between early physician follow-up and 30-day readmission among medicare beneficiaries hospitalized for heart failure,” Journal of the American Medical Association, vol. 303, no. 17, pp. 1716–1722, 2010.